Aliasing probability of hybrid linear feedback signature registers

Author(s):  
Yan Rongchang ◽  
Feng Wenyi ◽  
Huang Weikang
VLSI Design ◽  
1996 ◽  
Vol 4 (3) ◽  
pp. 199-205
Author(s):  
Geetani Edirisooriya

In Built-In Self-Test (BIST) techniques, test data reduction can be achieved using Linear Feedback Shift Registers (LFSRs). A faulty circuit may escape detection due to loss of information inherent to data compaction schemes. This is referred to as aliasing. The probability of aliasing in Multiple-Input Shift-Registers (MISRs) has been studied under various bit error models. By modeling the signature analyzer as a Markov process we show that the closed form expression derived for aliasing probability previously, for MISRs with primitive polynomials under q-ary symmetric error model holds for all MISRs irrespective of their feedback polynomials and for group cellular automata signature analyzers as well. If the erroneous behaviour of a circuit can be modelled with q-ary symmetric errors, then the test circuit complexity and propagation delay associated with the signature analyzer can be minimized by using a set of m single bit LFSRs without increasing the probability of aliasing.


Author(s):  
A. Suresh Babu ◽  
B. Anand

: A Linear Feedback Shift Register (LFSR) considers a linear function typically an XOR operation of the previous state as an input to the current state. This paper describes in detail the recent Wireless Communication Systems (WCS) and techniques related to LFSR. Cryptographic methods and reconfigurable computing are two different applications used in the proposed shift register with improved speed and decreased power consumption. Comparing with the existing individual applications, the proposed shift register obtained >15 to <=45% of decreased power consumption with 30% of reduced coverage area. Hence this proposed low power high speed LFSR design suits for various low power high speed applications, for example wireless communication. The entire design architecture is simulated and verified in VHDL language. To synthesis a standard cell library of 0.7um CMOS is used. A custom design tool has been developed for measuring the power. From the results, it is obtained that the cryptographic efficiency is improved regarding time and complexity comparing with the existing algorithms. Hence, the proposed LFSR architecture can be used for any wireless applications due to parallel processing, multiple access and cryptographic methods.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3083
Author(s):  
Mohamed Amine Fnaiech ◽  
Jaroslaw Guzinski ◽  
Mohamed Trabelsi ◽  
Abdellah Kouzou ◽  
Mohamed Benbouzid ◽  
...  

This paper presents a newly designed switching linear feedback structure of sliding mode control (SLF-SMC) plugged with an model reference adaptive system (MRAS) based sensorless field-oriented control (SFOC) for induction motor (IM). Indeed, the performance of the MRAS depends mainly on the operating point and the parametric variation of the IM. Hence, the sliding mode control (SMC) could be considered a good control alternative due to its easy implementation and robustness. Simulation and experimentation results are presented to show the superiority of the proposed SLF-SMC technique in comparison with the classical PI controller under different speed ranges and inertia conditions.


Author(s):  
Xindong Si ◽  
Hongli Yang

AbstractThis paper deals with the Constrained Regulation Problem (CRP) for linear continuous-times fractional-order systems. The aim is to find the existence conditions of linear feedback control law for CRP of fractional-order systems and to provide numerical solving method by means of positively invariant sets. Under two different types of the initial state constraints, the algebraic condition guaranteeing the existence of linear feedback control law for CRP is obtained. Necessary and sufficient conditions for the polyhedral set to be a positive invariant set of linear fractional-order systems are presented, an optimization model and corresponding algorithm for solving linear state feedback control law are proposed based on the positive invariance of polyhedral sets. The proposed model and algorithm transform the fractional-order CRP problem into a linear programming problem which can readily solved from the computational point of view. Numerical examples illustrate the proposed results and show the effectiveness of our approach.


Sign in / Sign up

Export Citation Format

Share Document