Development of Design Solution for Photoelectrocolorimeter Electron-Optical Unit by Heuristic Modifying the Model of the Physical Principle of Operation

Author(s):  
Alexey Yakovlev ◽  
Vladimir Grebennikov ◽  
Victor Barabanov
PCI Journal ◽  
1993 ◽  
Vol 38 (5) ◽  
pp. 20-29 ◽  
Author(s):  
Mary Lou Ralls ◽  
Luis Ybanez ◽  
John J. Panak

Instruments ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 9
Author(s):  
Sandro Palestini

The subject of space charge in ionization detectors is reviewed, showing how the observations and the formalism used to describe the effects have evolved, starting with applications to calorimeters and reaching recent, large time-projection chambers. General scaling laws, and different ways to present and model the effects are presented. The relations between space-charge effects and the boundary conditions imposed on the side faces of the detector are discussed, together with a design solution that mitigates some of the effects. The implications of the relative size of drift length and transverse detector size are illustrated. Calibration methods are briefly discussed.


2021 ◽  
Vol 18 (4) ◽  
pp. 857-871
Author(s):  
Elio Matteo Curcio ◽  
Giuseppe Carbone

AbstractThis paper addresses the design of a novel bionic robotic device for upper limb rehabilitation tasks at home. The main goal of the design process has been to obtain a rehabilitation device, which can be easily portable and can be managed remotely by a professional therapist. This allows to treat people also in regions that are not easily reachable with a significant cost reduction. Other potential benefits can be envisaged, for instance, in the possibility to keep social distancing while allowing rehabilitation treatments even during a pandemic spread. Specific attention has been devoted to design the main mechatronic components by developing specific kinematics and dynamics models. The design process includes the implementation of a specific control hardware and software. Preliminary experimental tests are reported to show the effectiveness and feasibility of the proposed design solution.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3200
Author(s):  
Branimir Farkaš ◽  
Ana Hrastov

Mining design is usually evaluated with different multiple-criteria decision-making (MCDM) methods when it comes to large open pit or underground ore mines, but it is not used on quarry sites. Since Croatia is mostly mining stone, the implementation of such methods in decision making of the quarry mine design is imperative but left out. In this paper, the PROMETHEE II and AHP decision-making methods are implemented on the quarry site to find out the best final quarry design contour. By implementing the MCDM methods, the best quarry model was chosen based on 22 different criteria parameters out of three final quarry designs. The chosen model is not only financially sound but also has the least environmental impact.


2021 ◽  
Vol 13 (6) ◽  
pp. 3249
Author(s):  
Marie C. Gramkow ◽  
Ulrik Sidenius ◽  
Gaochao Zhang ◽  
Ulrika K. Stigsdotter

The work of landscape architects can contribute to the United Nation’s Sustainable Development Goals and the associated ‘Leave no one behind’ agenda by creating accessible and health-promoting green spaces (especially goals 3, 10 and 11). To ensure that the design of green space delivers accessibility and intended health outcomes, an evidence-based design process is recommended. This is a challenge, since many landscape architects are not trained in evidence-based design, and leading scholars have called for methods that can help landscape architects work in an evidence-based manner. This paper examines the implementation of a process model for evidence-based health design in landscape architecture. The model comprises four steps: ‘evidence collection’, ‘programming’, ‘designing’, and ‘evaluation’. The paper aims to demonstrate how the programming step can be implemented in the design of a health-promoting nature trail that is to offer people with mobility disabilities improved mental, physical and social health. We demonstrate how the programming step systematizes evidence into design criteria (evidence-based goals) and design solutions (how the design criteria are to be solved in the design). The results of the study are presented as a design ‘Program’, which we hope can serve as an example for landscape architects of how evidence can be translated into design.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1080
Author(s):  
Mamdooh Alwetaishi ◽  
Omrane Benjeddou

The concern regarding local responsive building design has gained more attention globally as of late. This is due to the issue of the rapid increase in energy consumption in buildings for the purpose of heating and cooling. This has become a crucial issue in educational buildings and especially in schools. The major issue in school buildings in Saudi Arabia is that they are a form of prototype school building design (PSBD). As a result, if there is any concern in the design stage and in relation to the selection of building materials, this will spread throughout the region. In addition to that, the design is repeated regardless of the climate variation within the kingdom of Saudi Arabia. This research will focus on the influence of the window to wall ratio on the energy load in various orientations and different climatic regions. The research will use the energy computer tool TAS Environmental Design Solution Limited (EDSL) to calculate the energy load as well as solar gain. During the visit to the sample schools, a globe thermometer will be used to monitor the globe temperature in the classrooms. This research introduces a framework to assist architects and engineers in selecting the proper window to wall ratio (WWR) in each direction within the same building based on adequate natural light with a minimum reliance on energy load. For ultimate WWR for energy performance and daylight, the WWR should range from 20% to 30%, depending on orientation, in order to provide the optimal daylight factor combined with building energy efficiency. This ratio can be slightly greater in higher altitude locations.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 114
Author(s):  
Michael Silberstein ◽  
William Mark Stuckey ◽  
Timothy McDevitt

Our account provides a local, realist and fully non-causal principle explanation for EPR correlations, contextuality, no-signalling, and the Tsirelson bound. Indeed, the account herein is fully consistent with the causal structure of Minkowski spacetime. We argue that retrocausal accounts of quantum mechanics are problematic precisely because they do not fully transcend the assumption that causal or constructive explanation must always be fundamental. Unlike retrocausal accounts, our principle explanation is a complete rejection of Reichenbach’s Principle. Furthermore, we will argue that the basis for our principle account of quantum mechanics is the physical principle sought by quantum information theorists for their reconstructions of quantum mechanics. Finally, we explain why our account is both fully realist and psi-epistemic.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Adam Chalabi ◽  
S. Prem Kumar ◽  
Andy O’Bannon ◽  
Anton Pribytok ◽  
Ronnie Rodgers ◽  
...  

Abstract We compute entanglement entropy (EE) of a spherical region in (3 + 1)-dimensional $$ \mathcal{N} $$ N = 4 supersymmetric SU(N) Yang-Mills theory in states described holographically by probe D3-branes in AdS5 × S5. We do so by generalising methods for computing EE from a probe brane action without having to determine the probe’s backreaction. On the Coulomb branch with SU(N) broken to SU(N − 1) × U(1), we find the EE monotonically decreases as the sphere’s radius increases, consistent with the a-theorem. The EE of a symmetric-representation Wilson line screened in SU(N − 1) also monotonically decreases, although no known physical principle requires this. A spherical soliton separating SU(N) inside from SU(N − 1) × U(1) outside had been proposed to model an extremal black hole. However, we find the EE of a sphere at the soliton’s radius does not scale with the surface area. For both the screened Wilson line and soliton, the EE at large radius is described by a position-dependent W-boson mass as a short-distance cutoff. Our holographic results for EE and one-point functions of the Lagrangian and stress-energy tensor show that at large distance the soliton looks like a Wilson line in a direct product of fundamental representations.


Sign in / Sign up

Export Citation Format

Share Document