The prediction of pathogenicity of the influenza virus based on HA protein sequences

Author(s):  
Yi Zhang ◽  
Shili Jia ◽  
Haiyun Huang

2020 ◽  
Vol 15 (2) ◽  
pp. 121-134 ◽  
Author(s):  
Eunmi Kwon ◽  
Myeongji Cho ◽  
Hayeon Kim ◽  
Hyeon S. Son

Background: The host tropism determinants of influenza virus, which cause changes in the host range and increase the likelihood of interaction with specific hosts, are critical for understanding the infection and propagation of the virus in diverse host species. Methods: Six types of protein sequences of influenza viral strains isolated from three classes of hosts (avian, human, and swine) were obtained. Random forest, naïve Bayes classification, and knearest neighbor algorithms were used for host classification. The Java language was used for sequence analysis programming and identifying host-specific position markers. Results: A machine learning technique was explored to derive the physicochemical properties of amino acids used in host classification and prediction. HA protein was found to play the most important role in determining host tropism of the influenza virus, and the random forest method yielded the highest accuracy in host prediction. Conserved amino acids that exhibited host-specific differences were also selected and verified, and they were found to be useful position markers for host classification. Finally, ANOVA analysis and post-hoc testing revealed that the physicochemical properties of amino acids, comprising protein sequences combined with position markers, differed significantly among hosts. Conclusion: The host tropism determinants and position markers described in this study can be used in related research to classify, identify, and predict the hosts of influenza viruses that are currently susceptible or likely to be infected in the future.



Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 895
Author(s):  
Mei Luo ◽  
Ximin Wu ◽  
Yiming Li ◽  
Fujiang Guo

Influenza outbreaks pose a serious threat to human health. Hemagglutinin (HA) is an important target for influenza virus entry inhibitors. In this study, we synthesized four pentacyclic triterpene conjugates with a sialylglycopeptide scaffold through the Cu(I)-catalyzed alkyne-azide cycloaddition reaction (CuAAC) and prepared affinity assays of these conjugates with two HAs, namely H1N1 (A/WSN/1933) and H5N1 (A/Hong Kong/483/97), respectively. With a dissociation constant (KD) of 6.89 μM, SCT-Asn-betulinic acid exhibited the strongest affinity with the H1N1 protein. Furthermore, with a KD value of 9.10 μM, SCT-Asn-oleanolic acid exhibited the strongest affinity with the H5N1 protein. The conjugates considerably enhanced antiviral activity, which indicates that pentacyclic triterpenes can be used as a ligand to improve the anti-influenza ability of the sialylglycopeptide molecule by acting on the HA protein.



mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Huihui Kong ◽  
David F. Burke ◽  
Tiago Jose da Silva Lopes ◽  
Kosuke Takada ◽  
Masaki Imai ◽  
...  

ABSTRACT Since the emergence of highly pathogenic avian influenza viruses of the H5 subtype, the major viral antigen, hemagglutinin (HA), has undergone constant evolution, resulting in numerous genetic and antigenic (sub)clades. To explore the consequences of amino acid changes at sites that may affect the antigenicity of H5 viruses, we simultaneously mutated 17 amino acid positions of an H5 HA by using a synthetic gene library that, theoretically, encodes all combinations of the 20 amino acids at the 17 positions. All 251 mutant viruses sequenced possessed ≥13 amino acid substitutions in HA, demonstrating that the targeted sites can accommodate a substantial number of mutations. Selection with ferret sera raised against H5 viruses of different clades resulted in the isolation of 39 genotypes. Further analysis of seven variants demonstrated that they were antigenically different from the parental virus and replicated efficiently in mammalian cells. Our data demonstrate the substantial plasticity of the influenza virus H5 HA protein, which may lead to novel antigenic variants. IMPORTANCE The HA protein of influenza A viruses is the major viral antigen. In this study, we simultaneously introduced mutations at 17 amino acid positions of an H5 HA expected to affect antigenicity. Viruses with ≥13 amino acid changes in HA were viable, and some had altered antigenic properties. H5 HA can therefore accommodate many mutations in regions that affect antigenicity. The substantial plasticity of H5 HA may facilitate the emergence of novel antigenic variants.



2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Christopher S. Anderson ◽  
Sandra Ortega ◽  
Francisco A. Chaves ◽  
Amelia M. Clark ◽  
Hongmei Yang ◽  
...  

Abstract The induction of antibodies specific for the influenza HA protein stalk domain is being pursued as a universal strategy against influenza virus infections. However, little work has been done looking at natural or induced antigenic variability in this domain and the effects on viral fitness. We analyzed human H1 HA head and stalk domain sequences and found substantial variability in both, although variability was highest in the head region. Furthermore, using human immune sera from pandemic A/California/04/2009 immune subjects and mAbs specific for the stalk domain, viruses were selected in vitro containing mutations in both domains that partially contributed to immune evasion. Recombinant viruses encoding amino acid changes in the HA stalk domain replicated well in vitro, and viruses incorporating two of the stalk mutations retained pathogenicity in vivo. These findings demonstrate that the HA protein stalk domain can undergo limited drift under immune pressure and the viruses can retain fitness and virulence in vivo, findings which are important to consider in the context of vaccination targeting this domain.



Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1019
Author(s):  
Majid Forghani ◽  
Michael Khachay

Evaluation of the antigenic similarity degree between the strains of the influenza virus is highly important for vaccine production. The conventional method used to measure such a degree is related to performing the immunological assays of hemagglutinin inhibition. Namely, the antigenic distance between two strains is calculated on the basis of HI assays. Usually, such distances are visualized by using some kind of antigenic cartography method. The known drawback of the HI assay is that it is rather time-consuming and expensive. In this paper, we propose a novel approach for antigenic distance approximation based on deep learning in the feature spaces induced by hemagglutinin protein sequences and Convolutional Neural Networks (CNNs). To apply a CNN to compare the protein sequences, we utilize the encoding based on the physical and chemical characteristics of amino acids. By varying (hyper)parameters of the CNN architecture design, we find the most robust network. Further, we provide insight into the relationship between approximated antigenic distance and antigenicity by evaluating the network on the HI assay database for the H1N1 subtype. The results indicate that the best-trained network gives a high-precision approximation for the ground-truth antigenic distances, and can be used as a good exploratory tool in practical tasks.



2007 ◽  
Vol 81 (18) ◽  
pp. 9727-9736 ◽  
Author(s):  
Glenn A. Marsh ◽  
Raheleh Hatami ◽  
Peter Palese

ABSTRACT A final step in the influenza virus replication cycle is the assembly of the viral structural proteins and the packaging of the eight segments of viral RNA (vRNA) into a fully infectious virion. The process by which the RNA genome is packaged efficiently remains poorly understood. In an approach to analyze how vRNA is packaged, we rescued a seven-segmented virus lacking the hemagglutinin (HA) vRNA (deltaHA virus). This virus could be passaged in cells constitutively expressing HA protein, but it was attenuated in comparison to wild-type A/WSN/33 virus. Supplementing the deltaHA virus with an artificial segment containing green fluorescent protein (GFP) or red fluorescent protein (RFP) with HA packaging regions (45 3′ and 80 5′ nucleotides) partially restored the growth of this virus to wild-type levels. The absence of the HA vRNA in the deltaHA virus resulted in a 40 to 60% reduction in the packaging of the PA, NP, NA, M, and NS vRNAs, as measured by quantitative PCR (qPCR), and the packaging of these vRNAs was partially restored in the presence of GFP/RFP packaging constructs. To further define nucleotides of the HA coding sequence which are important for vRNA packaging, synonymous mutations were introduced into the full-length HA cDNA of influenza A/WSN/33 and A/Puerto Rico/8/34 viruses, and mutant viruses were rescued. qPCR analysis of vRNAs packaged in these mutant viruses identified a key region of the open reading frame (nucleotides 1659 to 1671) that is critical for the efficient packaging of an influenza virus H1 HA segment.



Author(s):  
Israa Elbashir ◽  
Heba Al Khatib ◽  
Hadi Yassine

Background: Influenza virus is a major cause of respiratory infections worldwide. Besides the common respiratory symptoms, namouras cases with gastrointestinal symptoms have been reported. Moreover, influenza virus has been detected in feces of up to 20.6 % of influenza-infected patients. Therefore, direct infection of intestinal cells with influenza virus is suspected; however, the mechanism of this infection has not been explored. AIM: To investigate influenza virus replication, cellular responses to infection, and virus evolution following serial infection in human Caucasian colon adenocarcinoma cells (Caco-2 cells). Method: Two influenza A subtypes (A/H3N2 and A/H1N1pdm 09) and one influenza B virus (B/Yamagata) were serially passaged in Caco-2. Quantitative PCR was used to study hormones and cytokines expression following infection. Deep sequencing analysis of viral genome was used to assess the virus evolution. Results: The replication capacity of the three viruses was maintained throughout 12 passages, with H3N2 virus being the fastest in adaptation. The expression of hormone and cytokines in Caco-2 cells was considerably different between the viruses and among the passages, however, a pattern of induction was observed at the late phase of infection. Deep sequencing analysis revealed a few amino acid substitutions in the HA protein of H3N2 and H1N1 viruses, mostly in the antigenic site. Moreover, virus evolution at the quasispecies level based on HA protein revealed that H3N2 and H1N1 harbored more diverse virus populations when compared to IBV, indicating their higher evolution within Caco-2 cells. Conclusion: The findings of this study indicate the possibility of influenza virus replication in intestinal cells. To further explain the gastrointestinal complications of influenza infections in-vivo experiments with different influenza viruses are needed.



2014 ◽  
Vol 2 (3) ◽  
pp. 224-228
Author(s):  
Jennifer Tram

Every year the FDA issues a recommendation for the composition of the year’s common influenza vaccine for influenzas A and B.  The FDA can consistently predict the dominance of a particular strand of influenza virus by taking into account previous years’ antigenic characterization percentages. However, the sudden disappearance of dominant antigens and the sudden emergence of drift variants can disrupt this pattern, which questions the effectiveness of that year’s vaccine. Basic Local Alignment Search Tool was used to compare the protein sequences for hemagglutinin and neuraminidase between the strands in the vaccine and the dominant viral strands. This study examined the effectiveness of vaccines from 2000 to 2012, focusing on the transitions between the B/Yamagata and B/Victoria lineages and A/New Caledonia and A/California lineages (H1N1). Between the years 2005 and 2006, dominance of the B/Yamagata lineage, represented by B/Shanghai/361/2002, disappeared almost entirely. For the 2005-2006 flu season, the CDC recommended a B/Shanghai/361/2002 vaccine which expressed a 98% identity to the dominant influenza B hemagglutinin sequence and a 97% identity to the dominant neuraminidase sequence. From 2007 to 2008, the A/New Caledonia virus declined to 34% of cases while the A/Solomon Islands/3/2006 virus increased to 66%. The A/New Caledonia/20/99 vaccine effectively expressed a 97% identity to the hemagglutinin sequence of A/Solomon Islands/3/2006 strand and a 98% identity to the neuraminidase sequence. This study demonstrates that from 2000 to 2012, despite drift variants in influenza viruses, the CDC-recommended vaccine effectively matches the hemagglutinin and neuraminidase protein sequences of the dominant viruses.DOI: http://dx.doi.org/10.3126/ijasbt.v2i3.10952 Int J Appl Sci Biotechnol, Vol. 2(3): 224-228  



Sign in / Sign up

Export Citation Format

Share Document