A new method for measuring the temperature-dependent dielectric constant of the PDMS fluids

Author(s):  
Qing-Ying Ren ◽  
Li-Feng Wang ◽  
Qing-An Huang
Author(s):  
Gyuseung Han ◽  
In Won Yeu ◽  
Kun Hee Ye ◽  
Seung-Cheol Lee ◽  
Cheol Seong Hwang ◽  
...  

Through DFT calculations, a Be0.25Mg0.75O superlattice having long apical Be–O bond length is proposed to have a high bandgap (>7.3 eV) and high dielectric constant (∼18) at room temperature and above.


1966 ◽  
Vol 46 (2) ◽  
pp. 210-216 ◽  
Author(s):  
A. Carrelli ◽  
F. Fittipaldi ◽  
L. Pauciulo

Author(s):  
A. P. Iliopoulos ◽  
B. D. Graber ◽  
J. G. Michopoulos ◽  
J. C. Steuben ◽  
A. J. Birnbaum ◽  
...  

Abstract The microwave sintering of ceramics and other materials has emerged as an attractive method of manufacturing solid objects though volumetric approaches. The accurate modeling of such processes requires the knowledge of the dielectric constant, and particularly the real and imaginary parts of the permittivity, of these materials as they vary with temperature. This particular measurement becomes very challenging as the temperature rises. In this work, an experimental apparatus and an inverse approach are proposed, based on the coupling of the thermo-mechano-electromagnetic physics that can be used to measure the real and imaginary parts of the dielectric constant at high temperatures.


2020 ◽  
Vol 825 ◽  
pp. 154138
Author(s):  
Abrar A. Khan ◽  
M. Sohail ◽  
M. Rahim ◽  
M. Mumtaz ◽  
M. Nasir Khan

2012 ◽  
Vol 1399 ◽  
Author(s):  
Kajal Jindal ◽  
Monika Tomar ◽  
Vinay Gupta

ABSTRACTTemperature dependent optical properties of RF-sputtered c-axis oriented ZnO:N thin film have been investigated. Surface Plasmon modes are excited at the metal-dielectric interface in the Kretschmann-Reather configuration using prism coupling technique. Effect of ZnO:N thin film deposited over Prism-Au structure on the SPR reflectance is studied over a wide range of temperature from 300–500 K at 633 nm wavelength. The value of dielectric constant of ZnO:N film obtained by fitting the experimentally obtained data with the theoretically generated SPR curve at the optical frequency is found to increase linearly with temperature. The increase in dielectric constant (4.03 to 4.11) with increase in temperature from 300 K to 500 K indicates a promising application of the system as an efficient low-cost temperature sensor.


2018 ◽  
Vol 24 (8) ◽  
pp. 5629-5632 ◽  
Author(s):  
Sweety Supriya ◽  
Sunil Kumar ◽  
Manoranjan Kar

The ac conductivity and dielectric properties on CoFe2−xMnxO4 for x = 0.00, 0.10, 0.15 and 0.20 have been studied in detail. All the samples were prepared in nanocrystalline size. These materials are found to be crystallized to Fd <mml:math display="block"> <mml:semantics> <mml:mover accent="true"> <mml:mi>3</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:semantics> </mml:math> m space group in cubic spinel structure. The dielectric constant and ac conductivity has been discussed as a function of frequency, temperature and composition. The relation between dielectric constant and ac conductivity has been analyzed and the results validate each other. The frequency response of ac conductivity (σac) obeys Johnschers power law and the parameters obtained, explain the sources of ac and dc electrical conductivity in the material. The frequency response of σac follows Maxwell–Wagner two-layer model. The influence of frequency as pumping force on activation energy has been determined. The temperature dependent ac conductivity shows the Arrhenius behavior. The σac observed to be enhanced with increase in frequency as well as temperature. The semiconducting behavior (NTCR) was also evident from temperature dependent electrical transport properties study. The low value of ac conductivity suggests a possible use of this material in dielectric applications.


2019 ◽  
Vol 38 (2019) ◽  
pp. 135-142
Author(s):  
Guo Zhanyong ◽  
Li Fachaung ◽  
Su Guang ◽  
Zhai Demei ◽  
Cheng Fang ◽  
...  

AbstractPermittivity is a vitally important parameter for describing the absorbing and heating characteristics of a material under microwave irradiation, and it is also strongly dependent on temperature. However, the literature contains little information on this topic and even less particular permittivity data at elevated temperatures. In this paper, the permittivity of a CuCl residue at temperatures from 13 to 450 °C at 2.45 GHz was measured using the cavity perturbation method. The relationship of its real part (ε′) and imaginary part (ε″) with temperature (T) was deduced. In addition, the temperature-dependent tangent (tan δ) and the penetration depth (d) of microwaves into the material were calculated. The results of the permittivity study show that the dielectric constant (ε′) of the CuCl residue increased linearly with increasing temperature. In contrast, the dielectric loss factor (ε″) and loss tangent first maintained on a steady value between 13 and 300 °C and then substantially increased from 300 to 450 °C. The positive interaction of the dielectric property and temperature showed the reasonableness of our earlier metallurgy process, where the CuCl residue for dechlorination was roasted at 350–450 °C under microwave irradiation.


2012 ◽  
Vol 12 (17) ◽  
pp. 8009-8020 ◽  
Author(s):  
J. Mao ◽  
X. Ren ◽  
L. Zhang ◽  
D. M. Van Duin ◽  
R. C. Cohen ◽  
...  

Abstract. The understanding of oxidation in forest atmospheres is being challenged by measurements of unexpectedly large amounts of hydroxyl (OH). A significant number of these OH measurements were made by laser-induced fluorescence in low-pressure detection chambers (called Fluorescence Assay with Gas Expansion (FAGE)) using the Penn State Ground-based Tropospheric Hydrogen Oxides Sensor (GTHOS). We deployed a new chemical removal method to measure OH in parallel with the traditional FAGE method in a California forest. The new method gives on average only 40–60% of the OH from the traditional method and this discrepancy is temperature dependent. Evidence indicates that the new method measures atmospheric OH while the traditional method is affected by internally generated OH, possibly from oxidation of biogenic volatile organic compounds. The improved agreement between OH measured by this new technique and modeled OH suggests that oxidation chemistry in at least one forest atmosphere is better understood than previously thought.


Sign in / Sign up

Export Citation Format

Share Document