Surface Plasmon Resonance based optical temperature sensor using ZnO:N thin film

2012 ◽  
Vol 1399 ◽  
Author(s):  
Kajal Jindal ◽  
Monika Tomar ◽  
Vinay Gupta

ABSTRACTTemperature dependent optical properties of RF-sputtered c-axis oriented ZnO:N thin film have been investigated. Surface Plasmon modes are excited at the metal-dielectric interface in the Kretschmann-Reather configuration using prism coupling technique. Effect of ZnO:N thin film deposited over Prism-Au structure on the SPR reflectance is studied over a wide range of temperature from 300–500 K at 633 nm wavelength. The value of dielectric constant of ZnO:N film obtained by fitting the experimentally obtained data with the theoretically generated SPR curve at the optical frequency is found to increase linearly with temperature. The increase in dielectric constant (4.03 to 4.11) with increase in temperature from 300 K to 500 K indicates a promising application of the system as an efficient low-cost temperature sensor.

1981 ◽  
Vol 10 ◽  
Author(s):  
J. M. Vandenberg ◽  
F. J. A. Den Broeder ◽  
R. A. Hamm

An in situ annealing X-ray study was applied to Cu-Al thin film couples over a wide range of copper-to-aluminum film ratios. This new technique, which has been previously described for a study on the Au-Al thin film system, enables us to make a temperature-dependent photographic X-ray analysis. The present study indicated that only a limited number of the wide variety of bulk phases form in the Cu-Al thin film interface, while some of these phases in the interface are transient. In the transient stages of the interface reaction, the f.c.c.-ordered phase β-Cu3A1 grows over the entire range of copper-to-aluminum film ratios after the first nucleation of CuA12, indicating a two-step nucleation reaction. On the aluminum-rich side, this phase transforms to a new ordered hexagonal phase β′. It could be interpreted as a superlattice of the metastable hexagonal ω phase occurring in zirconium-based alloys. The end phases are CuA1 and CuAl2.


2017 ◽  
Vol 29 (5) ◽  
pp. 466-469 ◽  
Author(s):  
Yan Zong ◽  
Peilin Lang ◽  
Li Yu ◽  
Gaoyan Duan ◽  
Zijuan Pan

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5477
Author(s):  
Ivana Podunavac ◽  
Vasa Radonic ◽  
Vesna Bengin ◽  
Nikolina Jankovic

In this paper, a microwave microfluidic sensor based on spoof surface plasmon polaritons (SSPPs) was proposed for ultrasensitive detection of dielectric constant. A novel unit cell for the SSPP structure is proposed and its behaviour and sensing potential analysed in detail. Based on the proposed cell, the SSPP microwave structure with a microfluidic reservoir is designed as a multilayer configuration to serve as a sensing platform for liquid analytes. The sensor is realized using a combination of rapid, cost-effective technologies of xurography, laser micromachining, and cold lamination bonding, and its potential is validated in the experiments with edible oil samples. The results demonstrate high sensitivity (850 MHz/epsilon unit) and excellent linearity (R2 = 0.9802) of the sensor, which, together with its low-cost and simple fabrication, make the proposed sensor an excellent candidate for the detection of small changes in the dielectric constant of edible oils and other liquid analytes.


2020 ◽  
Vol 21 (4) ◽  
pp. 660-668
Author(s):  
Z. R. Zapukhlyak ◽  
L.I. Nykyruy ◽  
G. Wisz ◽  
V.M. Rubish ◽  
V.V. Prokopiv ◽  
...  

The authors have developed a simple, cheap and reproducible technology for obtaining thin-film heterostructures based on CdTe with a given surface morphology during vacuum deposition, which contributes to their low cost [1, 2]. The critical dimensions (thicknesses) of individual layers of the heterostructure were substantiated, a simulation was performed and a wide range of optical properties was investigated [3]. It is shown that for the deposited CdS / CdTe heterostructure on glass it is possible to obtain an efficiency of 15.8%. Given that thin films are relatively new systems, their study can offer much wider opportunities for technological improvement of photovoltaic energy converters. According to the analysis of modern literature data, the efficiency can be increased by performing deposition on ITO films and introducing nanoparticles of controlled sizes.


2021 ◽  
Vol 10 (2) ◽  
pp. 163-169
Author(s):  
Ravinder Gaur ◽  
Himanshu Mohan Padhy ◽  
Manikandan Elayaperumal

Abstract. In this short communication, we propose a surface plasmon resonance (SPR) sensor based on a ZnO / Au hybrid thin-film material structure and experimentally investigate its sensitivity improvement. The Kretschmann-based SPR sensor utilizes ZnO thin films and nanostructures for performance enhancement. The advancement in SPR technology relies on a low-cost, high-sensitivity, and high-selectivity sensor. Metal oxide (MO) has been incorporated into the SPR sensor to be used for detection of biological and chemical compounds. ZnO as one of the metal oxides is an attractive material due to its unique physical and optical properties. Numerous techniques for fabrication and characterization of ZnO on SPR gold substrate have been studied. The mechanism for gas and biomolecule detection depends on their interaction with the ZnO surface, which is mainly attributed to the high isoelectric point of ZnO. There are several types of ZnO nanostructures which have been employed for SPR application based on the Kretschmann configuration. In the future, the thin film and nanostructures of ZnO could be a potential application for miniature design, robust, high sensitivity, and a low-cost portable type of SPR biosensor to be used for on-site testing in a real-time and label-free manner. The present work includes the application of a developed SPR setup for gas sensing at room temperature using a specially designed gas cell. The change in the optical properties of dielectric layers (ZnO) with adsorption of gases (NO2) in order to develop an optical sensor has been presented. The obtained results emphasize the applications of an SPR setup for the study of interaction of adsorbed gas molecules, with dielectrics and gas sensing.


Author(s):  
Vinh-Nguyen Phan ◽  
Patrick Abgrall ◽  
Nam-Trung Nguyen ◽  
Peige Shao ◽  
Jeroen Anton Van Kan

Recent advances in nanotechnology allow the fabrication of structures down to the nanometer range. Various theoretical and experimental studies on the characteristics of fluid in nanochannels have been carried out in recent years. The results show that transport phenomena in nanoscale promise a wide range of applications in biological and chemical analysis. Practical applications require fabrication of nanochannels with a short production time and at a low cost. Polymer is considered as a suitable material for mass production of nanochannels due to the wide range of properties available, as well as the low cost of material and fabrication process. This paper reports the fabrication of planar nanochannels using hot embossing and thermal bonding technique on a polymer thin film. The mold for hot embossing was fabricated on a silicon wafer using photolithography and Reactive Ion Etching (RIE). Polymethylmethacrylate (PMMA) thin film with a thickness of 250 μm was used as the base material to emboss the nanochannels from the silicon mold. Temperature and pressure were controlled and recorded continuously during the embossing process. The channels then were examined by Atomic Force Microscope (AFM) in tapping mode to verify the width and the depth of the channel. Next, another piece of PMMA thin film was bonded to the first piece by thermal bonding process to make closed nanochannels. Temperature and pressure during the bonding process were controlled and recorded. Access to the channels was made on the thin film by a laser cutter before embossing. The results showed that open planar channels with the depth down to 30nm can be fabricated on PMMA thin film with a process time less than 30 minutes. Width and depth of the channels agree well with appropriate dimensions on the mold. Bonding can be achieved within 40 minutes. Closed planar channels with the depth of 300nm were fabricated successfully by a combination of embossing and thermal bonding processes. This project demonstrates the possibility of fabricating nanochannels with low cost and short processing time using polymer material. The processes are suitable not only for nanochannels but also for more complicated nanostructures. The presented technique allows the fabrication of nanodevices with various designs.


2019 ◽  
Author(s):  
Shahab Bayani Ahangar ◽  
Kishan Bellur ◽  
Ezequiel Medici ◽  
Kazuya Tajiri ◽  
Jeffrey S. Allen ◽  
...  

The kinetics of water transport in confined thin film Perfluorinated sulfonic-acid (PFSA) ionomers is of vital importance in various applications such as a proton-exchange membrane or catalyst layers in polymer-electrolyte fuel cells. Advanced imaging techniques such as Neutron reflectivity, grazing-incidence x-ray scattering, and atomic force microscopy have been used for studying interfacial water transport in thin-film ionomers. The instruments mentioned are considered high-end, expensive, super-resolution microscopes. The need for an expensive microscopic apparatus restricts many laboratories in developing countries from conducting experiments in the field of interfacial sciences such as visualization and in-situ measurement of water transport in thin-film PFSA ionomers due to financial constraints, limited infrastructure, and lack of high-end technical support. Following the notion of portable and low-cost technologies, which is a vision of many researchers, we introduced the application of surface plasmon resonance imaging (SPRi) in the visualization of diffusion transport phenomena of water in thin-film ionomers. In this work, the smartphone-based Surface plasmon resonance imaging with 3D printed optical components that cost less than $350 is proposed for imaging of water transport in thin-film ionomer.


2014 ◽  
Vol 115 (3) ◽  
pp. 033516 ◽  
Author(s):  
S. Tripura Sundari ◽  
R. Ramaseshan ◽  
Feby Jose ◽  
S. Dash ◽  
A. K. Tyagi

Author(s):  
Youssef Ahmed Mobarak ◽  
Moamen Atef

<span>The potential impact of high permittivity gate dielectrics on thin film transistors short channel and circuit performance has been studied using <a name="OLE_LINK110"></a><a name="OLE_LINK118"></a>highly accurate analytical models. In addition, the gate-to-channel capacitance and parasitic fringe capacitances have been extracted. The suggested model in this paper has been <a name="OLE_LINK37"></a><a name="OLE_LINK36"></a>increased the surface potential and decreased the <a name="OLE_LINK93"></a><a name="OLE_LINK92"></a>threshold voltage, whenever the conventional silicon dioxide gate dielectric<a name="OLE_LINK290"></a><a name="OLE_LINK280"></a> is replaced by high-K gate dielectric novel nanocomposite PVP/La<sub>2</sub>O<sub>3</sub>K<sub>ox</sub>=25. Also, it has been investigated that a decrease in parasitic outer fringe capacitance and gate-to-channel capacitance, whenever the conventional silicon nitride is replaced by low-K gate sidewall spacer dielectric novel nanocomposite PTFE/SiO<sub>2</sub>K<sub>sp</sub>=2.9. Finally, it has been demonstrated that using low-K gate sidewalls with high-K gate insulators can be decreased the gate fringing field and threshold voltage. In addition, fabrication of nanocomposites from polymers and nano-oxide particles found to have potential candidates for using it in a wide range of applications in low cost due to low process temperature of these nanocomposites materials.</span>


Sign in / Sign up

Export Citation Format

Share Document