Permittivity Study of a CuCl Residue at 13–450 °C and Elucidation of the Microwave Intensification Mechanism for Its Dechlorination

2019 ◽  
Vol 38 (2019) ◽  
pp. 135-142
Author(s):  
Guo Zhanyong ◽  
Li Fachaung ◽  
Su Guang ◽  
Zhai Demei ◽  
Cheng Fang ◽  
...  

AbstractPermittivity is a vitally important parameter for describing the absorbing and heating characteristics of a material under microwave irradiation, and it is also strongly dependent on temperature. However, the literature contains little information on this topic and even less particular permittivity data at elevated temperatures. In this paper, the permittivity of a CuCl residue at temperatures from 13 to 450 °C at 2.45 GHz was measured using the cavity perturbation method. The relationship of its real part (ε′) and imaginary part (ε″) with temperature (T) was deduced. In addition, the temperature-dependent tangent (tan δ) and the penetration depth (d) of microwaves into the material were calculated. The results of the permittivity study show that the dielectric constant (ε′) of the CuCl residue increased linearly with increasing temperature. In contrast, the dielectric loss factor (ε″) and loss tangent first maintained on a steady value between 13 and 300 °C and then substantially increased from 300 to 450 °C. The positive interaction of the dielectric property and temperature showed the reasonableness of our earlier metallurgy process, where the CuCl residue for dechlorination was roasted at 350–450 °C under microwave irradiation.

2011 ◽  
Vol 23 (1) ◽  
pp. 53 ◽  
Author(s):  
Ping Yang ◽  
Li Meng ◽  
Yisong Hu ◽  
Zude Zhao ◽  
Xueping Ren

Orientation mapping based on electron back scattering diffraction technique was applied to reveal the distributions of disorientations and rotation axes of grains caused by plastic slip and twinning during channel die compression in magnesium alloy ZA31. In addition, the orientations of dynamically recrystallized grains and deformed grains were separated and compared with respect to their initial textures. The relationship of strain and {1012} twin amount was determined quantitatively by referring to twin orientations. The reasons leading to the observed phenomena are analyzed and discussed.


Author(s):  
M. Benhaddou ◽  
M. Ghammouri ◽  
Z. Hammouch ◽  
F. Latrache

The main originality of this work consists in investigating low cycle fatigue of cylindrical test piece with wings under imposed constraint and for the temperature 20°c, 200°c, 400°c. Based on a combination between the fatigue parameter of Jiang-Sehitoglu and the relationship of Coffin-Manson, a numerical model for the prediction of the number of cycles at break. It was found that the CuCrZr cylindrical test piece showed a reduction in fatigue life with increasing temperature.


2019 ◽  
Vol 37 (9-10) ◽  
pp. 745-763 ◽  
Author(s):  
Zhijun Wang ◽  
Xiaojuan Wang ◽  
Weiqin Zuo ◽  
Xiaotong Ma ◽  
Ning Li

The capacity of coal to adsorb methane is greatly affected by temperature and, in recent years, temperature-dependent adsorption has been studied by many researchers. Even so, comprehensive conclusions have not been reached and conflicting experimental results are common. This paper reviews the current state of research regarding the temperature-dependent adsorption of methane in coal and catalogs the conclusions from experiments conducted on that subject by 28 researchers, as published between 1995 and 2017. Probability theory and statistics are used to show that the conclusion generally accepted by most researchers is that the amount of methane adsorbed by coal decreases with increasing temperature. It is highly likely that the Langmuir volume decreases as the temperature rises, and it is also probable that the Langmuir pressure increases at higher temperatures. Equations are presented that express the relationships between methane adsorption, Langmuir volume, Langmuir pressure, and temperature. Future research should be directed toward determining the relationship between Langmuir pressure and temperature. The results of the study presented herein provide a theoretical basis for predicting the gas content in coal seams and improving the efficiency of coalbed methane development.


1989 ◽  
Vol 176 ◽  
Author(s):  
Mark Fuhrmann ◽  
Richard Pietrzak ◽  
John Heiser ◽  
Eena-Mai Franz ◽  
Peter Colombo

ABSTRACTThe leaching mechanisms of simulated low-level radioactive waste forms are being determined as support for development of an accelerated leach test. Two approaches are being used: (1) comparison of leaching data with results of a model that describes diffusion from a finite cylinder, and (2) observation of the leaching process at temperatures between 20°C and 65°C. To provide results that can be used for modeling, leaching at elevated temperatures must change neither the leaching mechanism nor the structural controls of leaching such as the porosity. Releases of 137Cs, 85Sr, calcium, sodium and potassium from portland cement containing sodium sulfate, as a simulated evaporator sludge, have been determined under a variety of experimental conditions. Data from the leach tests were compared to model results for diffusion from the finite cylinder. While most leaching appears to be diffusion controlled, notable exceptions occur. For all samples, activation energies ranging between 6 and 11 Kcal/mole have been calculated from the relationship of the effective diffusion coefficient to increasing temperature, close to the expected value of 5 Kcal/mole for diffusion.


Parasitology ◽  
1991 ◽  
Vol 102 (1) ◽  
pp. 105-112 ◽  
Author(s):  
P. A. Jansen ◽  
T. A. Bakke

SUMMARYThe relationship of survival and reproduction of Gyrodactylus salaris Malmberg on the Atlantic salmon (Salmo salar) to water temperature (2·5–19·0 °C), was studied on the basis of temporal sequence of births and age at death of individual parasites on isolated salmon, and of infrapopulation growth on isolated and grouped salmon. Mean life-span of the parasite was negatively correlated with water temperature: 33·7 days at 2·5 °C and 4·5 days at 19·0 °C. The average number of offspring per parasite peaked between 6·5 and 13·0 °C, and was approximately 2·4 at these two temperatures. Both the period between the successive births of the offspring (max 4) and the estimated generation time were negatively correlated with temperature. The innate capacity for increase (rm) was positively correlated with temperature: from 0·02 (/parasite/day) at 2·5 °C to 0·22 (/parasite/day) at 19·0 °C. Growth of the infrapopulations was positively correlated with water temperature and was higher on isolated fish than on grouped fish, though less than the potential parasite population growth estimated from rm. In the infrapopulations the mean intensity of parasites continued to increase throughout all the experiments on both isolated fish and on grouped fish.


2016 ◽  
Vol 11 (6) ◽  
Author(s):  
Chao Xu ◽  
Zhao-Dong Xu ◽  
Teng Ge ◽  
Ya-Xin Liao

This work presents an experimental and numerical study on the dynamic properties of viscoelastic (VE) microvibration damper under microvibration conditions at different frequencies and temperatures. The experimental results show that the storage modulus and the loss factor of VE microvibration damper both increase with increasing frequency but decrease with increasing temperature. To explicitly and accurately represent the temperature and frequency effects on the dynamic properties of VE microvibration damper, a modified standard solid model based on a phenomenological model and chain network model is proposed. A Gaussian chain spring and a temperature-dependent dashpot are employed to reflect the temperature effect in the model, and the frequency effect is considered with the nature of the standard solid model. Then, the proposed model is verified by comparing the numerical results with the experimental data. The results show that the proposed model can accurately describe the dynamic properties of VE microvibration damper at different temperatures and frequencies.


Author(s):  
K.Ch. Varada Rajulu ◽  
B.N. Mohanty

This study presents the dielectric and conductivity properties as function of temperature and frequency of wood based composites. These properties were measured by an open-ended coaxial probe at frequency range between 100 kHz to 100MHz, temperature from 30OC to 200OC which is fully computer interfaced. It has been observed that dielectric constant (ε') and dielectric loss factor (ε") increase with increasing temperature and decrease with increasing frequency. At low temperature region, the conductivity depends significantly on the frequency. However, with the increase in temperature dielectric relaxation takes place and the dependency of the conductivity on frequency get reduced. The patterns of variation were established for the studied specimens and discrepancies were discussed. The study of dielectric properties will help in improving the drying, heating and gluing processes of wood and wood based products.


2020 ◽  
Author(s):  
Zumurelaiti Ainiwaer ◽  
Reyilanmu Maisaidi ◽  
Jing Liu ◽  
Lili Han ◽  
Sulaiya Husaiyin ◽  
...  

Abstract Background: PGF and TNFAIP2 are important angiogenic factors, which were abnormal expression in cervical cancer (CC). However, there is currently no report investigating the relationship of PGF and TNFAIP2 gene polymorphisms to CC risk.Methods: We conducted a case-control study of 342 CC patients and 498 cancer-free controls in a Chinese Uygur female population. Three SNPs (PGF rs8019391, PGF rs2268615, and TNFAIP2 rs710100) were selected and genotyped to assess the possible association of PGF and TNFAIP2 polymorphisms with CC susceptibility. Logistic regression analysis adjusted by age was used.Results: PGF rs2268615 (OR = 1.39, 95% CI = 1.04-1.86, p = 0.024) and TNFAIP2 rs710100 (OR = 1.44, 95% CI =1.07-1.95, p = 0.018) polymorphisms were associated with the increased risk of CC. Moreover, T allele of PGF rs8019391 was highly represented in patients with stage III–IV compared with stage I-II (OR = 2.17, p = 4.58´10-4). MDR analysis revealed a positive interaction between the SNPs.Conclusion: Our data indicated that PGF rs2268615, and TNFAIP2 rs710100 polymorphisms might be risk factors for CC susceptibility, which contributed to the increased risk of CC.Trail registration: Not applicable.


Author(s):  
R.C. Tucker ◽  
A.A. Ashari

Abstract Thermal spray coatings are widely used for erosion resistance, but the relationship between the microstructure of the coatings and their erosion resistance is not well understood. In this paper the performance of several commonly used coatings at ambient and elevated temperatures is reviewed in light of the coatings' structure and compared with a new coating. Two high temperature industrial applications, solid particle erosion in steam turbines and alumina-based erosion have been chosen to illustrate the significance of a coating's structure on its performance.


2017 ◽  
Vol 72 (12) ◽  
pp. 1105-1112
Author(s):  
Yasuhiko Iwadate ◽  
Takahiro Ohkubo

AbstractElectrical conductivities (κs) of molten DyCl3-NaCl and DyCl3-KCl systems were estimated by measuring the impedances of each mixture melt at any temperature and/or frequency. The molar volumes (Vms) were measured by dilatometry and represented as a polynomial empirical equation of temperature and composition. Due to both the properties, the molar conductivities (Λms) were calculated and their temperature and/or composition dependences were discussed from the standpoint of structural features as well. The κs increased curvilinearly with increasing temperature across the whole composition ranges. This trend was also applied to the Λms which was fitted by an Arrhenius-type equation. The relationship of Λms with melt composition was studied and the Λms were found to decrease with increasing composition of DyCl3. These findings were interpreted based on the results of structural science so far reported, and finally, the relationship between Λms and the structures of pure rare earth chloride melts was discussed.


Sign in / Sign up

Export Citation Format

Share Document