Machine Learning-based Analysis of correlation between Energy Consumption data of the Company and its Sales

Author(s):  
Jungi Lee ◽  
NacWoo Kim ◽  
HyunYong Lee ◽  
SangJun Park ◽  
ByungTak Lee
Author(s):  
Joseph Severino ◽  
Yi Hou ◽  
Ambarish Nag ◽  
Jacob Holden ◽  
Lei Zhu ◽  
...  

Real-time highly resolved spatial-temporal vehicle energy consumption is a key missing dimension in transportation data. Most roadway link-level vehicle energy consumption data are estimated using average annual daily traffic measures derived from the Highway Performance Monitoring System; however, this method does not reflect day-to-day energy consumption fluctuations. As transportation planners and operators are becoming more environmentally attentive, they need accurate real-time link-level vehicle energy consumption data to assess energy and emissions; to incentivize energy-efficient routing; and to estimate energy impact caused by congestion, major events, and severe weather. This paper presents a computational workflow to automate the estimation of time-resolved vehicle energy consumption for each link in a road network of interest using vehicle probe speed and count data in conjunction with machine learning methods in real time. The real-time pipeline can deliver energy estimates within a couple seconds on query to its interface. The proposed method was evaluated on the transportation network of the metropolitan area of Chattanooga, Tennessee. The volume estimation results were validated with ground truth traffic volume data collected in the field. To demonstrate the effectiveness of the proposed method, the energy consumption pipeline was applied to real-world data to quantify road transportation-related energy reduction because of mitigation policies to slow the spread of COVID-19 and to measure energy loss resulting from congestion.


Author(s):  
Mariya Sodenkamp ◽  
Konstantin Hopf ◽  
Thorsten Staake

Smart electricity meters allow capturing consumption load profiles of residential buildings. Besides several other applications, the retrieved data renders it possible to reveal household characteristics including the number of persons per apartment, age of the dwelling, etc., which helps to develop targeted energy conservation services. The goal of this chapter is to develop further related methods of smart meter data analytics that infer such household characteristics using weekly load curves. The contribution of this chapter to the state of the art is threefold. The authors first quadruplicate the number of defined features that describe electricity load curves to preserve relevant structures for classification. Then, they suggest feature filtering techniques to reduce the dimension of the input to a set of a few significant ones. Finally, the authors redefine class labels for some properties. As a result, the classification accuracy is elevated up to 82%, while the runtime complexity is significantly reduced.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7167
Author(s):  
Prince Waqas Khan ◽  
Yongjun Kim ◽  
Yung-Cheol Byun ◽  
Sang-Joon Lee

Modern computing resources, including machine learning-based techniques, are used to maintain stability between the demand and supply of electricity. Machine learning is widely used for the prediction of energy consumption. The researchers present several artificial intelligence and machine learning-based methods to improve the prediction accuracy of energy consumption. However, the discrepancy between actual energy consumption and predicted energy consumption is still challenging. Various factors, including changes in weather, holidays, and weekends, affect prediction accuracy. This article analyses the overall prediction using error curve learning and a hybrid model. Actual energy consumption data of Jeju island, South Korea, has been used for experimental purposes. We have used a hybrid ML model consisting of Catboost, Xgboost, and Multi-layer perceptron for the prediction. Then we analyze the factors that affect the week-ahead (WA) and 48 h prediction results. Mean error on weekdays is recorded as 2.78%, for weekends 2.79%, and for special days it is recorded as 4.28%. We took into consideration significant predicting errors and looked into the reasons behind those errors. Furthermore, we analyzed whether factors, such as a sudden change in temperature and typhoons, had an effect on energy consumption. Finally, the authors have considered the other factors, such as public holidays and weekends, to analyze the significant errors in the prediction. This study can be helpful for policymakers to make policies according to the error-causing factors.


2021 ◽  
Vol 13 (15) ◽  
pp. 8670
Author(s):  
Xiwen Cui ◽  
Shaojun E ◽  
Dongxiao Niu ◽  
Dongyu Wang ◽  
Mingyu Li

In the process of economic development, the consumption of energy leads to environmental pollution. Environmental pollution affects the sustainable development of the world, and therefore energy consumption needs to be controlled. To help China formulate sustainable development policies, this paper proposes an energy consumption forecasting model based on an improved whale algorithm optimizing a linear support vector regression machine. The model combines multiple optimization methods to overcome the shortcomings of traditional models. This effectively improves the forecasting performance. The results of the projection of China’s future energy consumption data show that current policies are unable to achieve the carbon peak target. This result requires China to develop relevant policies, especially measures related to energy consumption factors, as soon as possible to ensure that China can achieve its peak carbon targets.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1627
Author(s):  
Giovanni Battista Gaggero ◽  
Mario Marchese ◽  
Aya Moheddine ◽  
Fabio Patrone

The way of generating and distributing energy throughout the electrical grid to all users is evolving. The concept of Smart Grid (SG) took place to enhance the management of the electrical grid infrastructure and its functionalities from the traditional system to an improved one. To measure the energy consumption of the users is one of these functionalities that, in some countries, has already evolved from a periodical manual consumption reading to a more frequent and automatic one, leading to the concept of Smart Metering (SM). Technology improvement could be applied to the SM systems to allow, on one hand, a more efficient way to collect the energy consumption data of each user, and, on the other hand, a better distribution of the available energy through the infrastructure. Widespread communication solutions based on existing telecommunication infrastructures instead of using ad-hoc ones can be exploited for this purpose. In this paper, we recall the basic elements and the evolution of the SM network architecture focusing on how it could further improve in the near future. We report the main technologies and protocols which can be exploited for the data exchange throughout the infrastructure and the pros and cons of each solution. Finally, we propose an innovative solution as a possible evolution of the SM system. This solution is based on a set of Internet of Things (IoT) communication technologies called Low Power Wide Area Network (LPWAN) which could be employed to improve the performance of the currently used technologies and provide additional functionalities. We also propose the employment of Unmanned Aerial Vehicles (UAVs) to periodically collect energy consumption data, with evident advantages especially if employed in rural and remote areas. We show some preliminary performance results which allow assessing the feasibility of the proposed approach.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 833
Author(s):  
Irene Mirandola ◽  
Guido A. Berti ◽  
Roberto Caracciolo ◽  
Seungro Lee ◽  
Naksoo Kim ◽  
...  

This research provides an insight on the performances of machine learning (ML)-based algorithms for the estimation of the energy consumption in metal forming processes and is applied to the radial-axial ring rolling process. To define the mutual influence between ring geometry, process settings, and ring rolling mill geometries with the resulting energy consumption, measured in terms of the force integral over the processing time (FIOT), FEM simulations have been implemented in the commercial SW Simufact Forming 15. A total of 380 finite element simulations with rings ranging from 650 mm < DF < 2000 mm have been implemented and constitute the bulk of the training and validation datasets. Both finite element simulation settings (input), as well as the FI (output), have been utilized for the training of eight machine learning models, implemented with Python scripts. The results allow defining that the Gradient Boosting (GB) method is the most reliable for the FIOT prediction in forming processes, being its maximum and average errors equal to 9.03% and 3.18%, respectively. The trained ML models have been also applied to own and literature experimental cases, showing a maximum and average error equal to 8.00% and 5.70%, respectively, thus proving once again its reliability.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3775 ◽  
Author(s):  
Khaled Bawaneh ◽  
Farnaz Ghazi Nezami ◽  
Md. Rasheduzzaman ◽  
Brad Deken

Healthcare facilities in the United States account for 4.8% of the total area in the commercial sector and are responsible for 10.3% of total energy consumption in this sector. The number of healthcare facilities increased by 22% since 2003, leading to a 21% rise in energy consumption and an 8% reduction in energy intensity per unit of area (544.8 kWh/m2). This study provides an analytical overview of the end-use energy consumption data in healthcare systems for hospitals in the United States. The energy intensity of the U.S. hospitals ranges from 640.7 kWh/m2 in Zone 5 (very hot) to 781.1 kWh/m2 in Zone 1 (very cold), with an average of 738.5 kWh/m2. This is approximately 2.6 times higher than that of other commercial buildings. High energy intensity in the healthcare facilities, particularly in hospitals, along with energy costs and associated environmental concerns make energy analysis crucial for this type of facility. The proposed analysis shows that U.S. healthcare facilities have higher energy intensity than those of most other countries, especially the European ones. This necessitates the adoption of more energy-efficient approaches to the infrastructure and the management of healthcare facilities in the United States.


Sign in / Sign up

Export Citation Format

Share Document