Comparative Analysis and Control Strategy for Traffic Accidents in Different Types of Tunnels

Author(s):  
Ma Zhaoyou ◽  
Wang Changjun ◽  
Fang Shouen ◽  
Liu Shuo
Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1716
Author(s):  
Huaibao Wang ◽  
Zhigang Lu

A new converter for the non-isolated PV (photovoltaic) system is presented in this paper. It has the advantage that the input terminal of the proposed converter is connected to the output negative terminal. In this way, the parasitic capacitance is bypassed to eliminate the undesirable leakage current. The proposed converter can achieve the step-up voltage with four switches only. Aside from that, the carried-based modulation is used, and the control structure is simple. The article analyzes the working modes and control strategy of the proposed converter. In addition, a comparative analysis is provided. The feasibility of the proposed converter under different working modes is verified by simulation. Finally, the digital control prototype with DSP plus FPGA is established and the experimental tests are carried out. The experimental results verify the effectiveness of the proposed converter.


2020 ◽  
Vol 14 (07) ◽  
pp. 696-698
Author(s):  
Xiaoyan Zhang ◽  
Yuxuan Wang

Different countries have employed various strategies for controlling the coronavirus disease (COVID-19) pandemic because there is no consensus regarding effective control measures in the literature. Epidemic control strategies can be classified into two types based on their characteristics. The first type is the “severe acute respiratory syndrome (SARS)-like epidemic control strategy,” i.e., containment. The second type is the “influenza pandemic-like epidemic control strategy” (flu pandemic-like strategy), i.e., mitigation. This paper presents a comparative analysis on the prevention and control strategies for COVID-19 in different countries to provide a reference to control the further spread of the pandemic.


Author(s):  
Mouad Garziad ◽  
Abdelmjid Saka

The Modelling and control design of Two Wheel Vehicle represents an open and a challenging problem in terms of the complexity in these kind of vehicles. This article aims to represent a comparative analysis of two strategies of control which are modern controller LQR and Conventional Controller PID for the two wheeled vehicle. The main goal is to compare their performances in terms of the time specification and to determine the best control strategy. We begin our development with the implementation of the dynamic model of the two wheeled vehicle using Lagrange modeling with holonomic constraints. Further, the article deals with analyzing the eigenvalues of the linearized dynamic system at which the two wheeled vehicle lean and steer are stable. This research targets the development of the two controllers: PID and LQR. Those controllers are used to control both steer angle, and lean rate angle of two wheeled vehicle. The study includes as well a comparative assessment of those control strategies in terms of performance.


Author(s):  
Y. Arockia Suganthi ◽  
Chitra K. ◽  
J. Magelin Mary

Dengue fever is a painful mosquito-borne infection caused by different types of virus in various localities of the world. There is no particular medicine or vaccine to treat person suffering from dengue fever. Dengue viruses are transmitted by the bite of female Aedes (Ae) mosquitoes. Dengue fever viruses are mainly transmitted by Aedes which can be active in tropical or subtropical climates. Aedes Aegypti is the key step to avoid infection transmission to save millions of people in all over the world. This paper provides a standard guideline in the planning of dengue prevention and control measures. At the same time gives the priorities including clinical management and hospitalized dengue patients have to address essentially.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (05) ◽  
pp. 295-305
Author(s):  
Wesley Gilbert ◽  
Ivan Trush ◽  
Bruce Allison ◽  
Randy Reimer ◽  
Howard Mason

Normal practice in continuous digester operation is to set the production rate through the chip meter speed. This speed is seldom, if ever, adjusted except to change production, and most of the other digester inputs are ratioed to it. The inherent assumption is that constant chip meter speed equates to constant dry mass flow of chips. This is seldom, if ever, true. As a result, the actual production rate, effective alkali (EA)-to-wood and liquor-to-wood ratios may vary substantially from assumed values. This increases process variability and decreases profits. In this report, a new continuous digester production rate control strategy is developed that addresses this shortcoming. A new noncontacting near infrared–based chip moisture sensor is combined with the existing weightometer signal to estimate the actual dry chip mass feedrate entering the digester. The estimated feedrate is then used to implement a novel feedback control strategy that adjusts the chip meter speed to maintain the dry chip feedrate at the target value. The report details the results of applying the new measurements and control strategy to a dual vessel continuous digester.


2014 ◽  
Vol 9 (4) ◽  
pp. 792 ◽  
Author(s):  
Anna Pinnarelli ◽  
Giuseppe Barone ◽  
Giovanni Brusco ◽  
Alessandro Burgio ◽  
Daniele Menniti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document