A Comparative Assessment between LQR and PID Strategies in Control of Two Wheeled Vehicle

Author(s):  
Mouad Garziad ◽  
Abdelmjid Saka

The Modelling and control design of Two Wheel Vehicle represents an open and a challenging problem in terms of the complexity in these kind of vehicles. This article aims to represent a comparative analysis of two strategies of control which are modern controller LQR and Conventional Controller PID for the two wheeled vehicle. The main goal is to compare their performances in terms of the time specification and to determine the best control strategy. We begin our development with the implementation of the dynamic model of the two wheeled vehicle using Lagrange modeling with holonomic constraints. Further, the article deals with analyzing the eigenvalues of the linearized dynamic system at which the two wheeled vehicle lean and steer are stable. This research targets the development of the two controllers: PID and LQR. Those controllers are used to control both steer angle, and lean rate angle of two wheeled vehicle. The study includes as well a comparative assessment of those control strategies in terms of performance.

2020 ◽  
Vol 14 (07) ◽  
pp. 696-698
Author(s):  
Xiaoyan Zhang ◽  
Yuxuan Wang

Different countries have employed various strategies for controlling the coronavirus disease (COVID-19) pandemic because there is no consensus regarding effective control measures in the literature. Epidemic control strategies can be classified into two types based on their characteristics. The first type is the “severe acute respiratory syndrome (SARS)-like epidemic control strategy,” i.e., containment. The second type is the “influenza pandemic-like epidemic control strategy” (flu pandemic-like strategy), i.e., mitigation. This paper presents a comparative analysis on the prevention and control strategies for COVID-19 in different countries to provide a reference to control the further spread of the pandemic.


Author(s):  
Young Joo Shin ◽  
Peter H. Meckl

Benchmark problems have been used to evaluate the performance of a variety of robust control design methodologies by many control engineers over the past 2 decades. A benchmark is a simple but meaningful problem to highlight the advantages and disadvantages of different control strategies. This paper verifies the performance of a new control strategy, which is called combined feedforward and feedback control with shaped input (CFFS), through a benchmark problem applied to a two-mass-spring system. CFFS, which consists of feedback and feedforward controllers and shaped input, can achieve high performance with a simple controller design. This control strategy has several unique characteristics. First, the shaped input is designed to extract energy from the flexible modes, which means that a simpler feedback control design based on a rigid-body model can be used. In addition, only a single frequency must be attenuated to reduce residual vibration of both masses. Second, only the dynamics between control force and the first mass need to be considered in designing both feedback and feedforward controllers. The proposed control strategy is applied to a benchmark problem and its performance is compared with that obtained using two alternative control strategies.


Author(s):  
Kai Wang ◽  
Xinping Yan ◽  
Yupeng Yuan

Nowadays, with the higher voice of ship energy saving and emission reduction, the research on energy efficiency management is particularly necessary. Energy efficiency management and control of ships is an effective way to improve the ship energy efficiency. In this paper, according to the new clean propulsion system configurations of 5000 tons of bulk carrier, the energy efficiency management control strategy of the clean propulsion system is designed based on the model of advanced brushless doubly-fed shaft generator, propulsion system using LNG/diesel dual fuel engine and energy consumption of the main engine for reducing energy consumption. The simulation model of the entire propulsion system and the designed control strategy were designed. The influence of the engine speed on the ship energy efficiency was analyzed, and the feasibility of the energy efficiency management control strategies was verified by simulation using Matlab/Simulink. The results show that the designed strategies can ensure the power requirement of the whole ship under different conditions and improve the ship energy efficiency and reduce CO2 emissions.


Author(s):  
G Zheng ◽  
H Xu ◽  
X Wang ◽  
J Zou

This paper studies the operation of wind turbines in terms of three phases: start-up phase, power-generation phase, and shutdown phase. Relationships between the operational phase and control rules for the speed of rotation are derived for each of these phases. Taking into account the characteristics of the control strategies in the different operational phases, a global control strategy is designed to ensure the stable operation of the wind turbine in all phases. The results of simulations are presented that indicate that the proposed algorithm can control the individual phases when considered in isolation and also when they are considered in combination. Thus, a global control strategy for a wind turbine that is based on a single algorithm is presented which could have significant implications on the control and use of wind turbines.


Author(s):  
Jikai Liu ◽  
Biao Ma ◽  
Heyan Li ◽  
Man Chen ◽  
Jianwen Chen

The cooperation mode between the engagement and disengagement clutches for vehicles equipped with Dual Clutch Transmission (DCT) is of vital importance to achieve a smooth gearshift, in particular for the downshift process as its unavoidable power interruption during the inertia phase. Hence, to elevate the performance of DCT downshifting process, an analytical model and experimental validation for the analysis, simulation and control strategy are presented. Optimized pressure profiles applied on two clutches are obtained based on the detailed analysis of downshifting process. Then, according to the analysis results, a novel control strategy that can achieve downshift task with only one clutch slippage is proposed. The system model is established on Matlab/Simulink platform and used to study the variation of output torque and speed in response to different charging pressure profiles and various external loads during downshifting process. Simulation results show that, compared with conventional control strategies, the proposed one can not only avoid the torque hole and power circulation, but shorten the shift time and reduce the friction work. Furthermore, to validate the effectiveness of the control strategy, the bench test equipped with DCT is conducted and the experiment results show a good agreement with the simulation results.


Author(s):  
D. F. Rancruel ◽  
M. R. von Spakovsky

Solid-Oxide-Fuel-Cell (SOFC) stacks respond in seconds to changes in load while the balance of plant subsystem (BOPS) responds in times several orders of magnitude higher. This dichotomy diminishes the reliability and performance of SOFC electrodes with changes in load. In the same manner current and voltage ripples which result from particular power electronic subsystem (PES) topologies and operation produce a negative effect on the SOFC stack subsystem (SS) performance. The difference in transient response among the sub-systems must be approached in a way which makes operation of the entire system not only feasible but ensures that efficiency and power density, fuel utilization, fuel conversion, and system response are optimal at all load conditions. Thus, a need exists for the development of transient component- and system-level models of SOFC based auxiliary power units (APUs), i.e. coupled BOPS, SS, and PES, and the development of methodologies for optimizing subsystem responses and for investigating system-interaction issues. In fact the transient process occurring in a SOFC based APU should be systematically treated during the entire creative process of synthesis, design, and operational control, leading in its most general sense to a dynamic optimization problem. This entails finding an optimal system/component synthesis/design, taking into account on- and off-design operation, which in turn entails finding an optimal control strategy and control profile for each sub-system/component and control variable. Such an optimization minimizes an appropriate objective function while satisfying all system constraints. A preliminary set of chemical, thermal, electrochemical, electrical, and mechanical models based on first principles and validated with experimental data have been developed and implemented using a number of different platforms. These models have been integrated in order to be able to perform component, subsystem, and system analyses as well as develop optimal syntheses/designs and control strategies for transportation and stationary SOFC based APUs. Some pertinent results of these efforts are presented here.


2011 ◽  
Vol 135-136 ◽  
pp. 261-267
Author(s):  
Hai Tao Min ◽  
Dong Jin Ye ◽  
Yuan Bin Yu

This paper introduced the structure of Extended-Range Electric Vehicles as well as its characteristics. Principle researches have been offered on the parameters matching of the power-train and main components. Operating modes and control strategies were discussed, especially the two control strategies of charge sustaining mode which is shown as load following strategy and engine optimal strategy, and the effects of both control strategies are simulated and analyzed. The results indicate that the load following strategy can obviously extend battery’s lifespan, but the engine optimal strategy can reduce fuel consumption and emission effectively.


Author(s):  
John T. Cameron ◽  
Sean Brennan

This work presents results of an initial investigation into models and control strategies suitable to prevent vehicle rollover due to untripped driving maneuvers. Outside of industry, the study of vehicle rollover inclusive of both experimental validation and practical controller design is limited. The researcher interested in initiating study on rollover dynamics and control is left with the challenging task of identifying suitable vehicle models from the literature, comparing these models with experimental results, and determining suitable parameters for the models. This work addresses these issues via experimental testing of published models. Parameter estimation data based on model fits is presented, with commentary given on the validity of different methods. Experimental results are then presented and compared to the output predicted by the various models in both the time and frequency domain in order to provide a foundation for future work.


2013 ◽  
Vol 380-384 ◽  
pp. 2962-2966
Author(s):  
Chun Guang Tian ◽  
De Xin Li ◽  
Li Xia Cai ◽  
Tian Dong ◽  
Xiao Juan Han

As one of main clean energies, wind power has been developed fast, but the fluctuations of active power at a wind farm is a huge challenge for the grid system, thus it is essential for wind farm connected into grid to detection the active power. This paper studied control strategies and detection methods of the active power at a wind farm. Simulation results showed the effective detection of active power at a wind farm can improve the characteristics of the grid and the ability of wind farm to regulate the grid and increase the scheduled ability of wind farm.


2019 ◽  
Author(s):  
Tjibbe Donker ◽  
Katie L. Hopkins ◽  
Susan Hopkins ◽  
Berit Muller-Pebody ◽  
Tim E.A. Peto ◽  
...  

AbstractInfection prevention and control strategies aimed at reducing the occurrence of Carbapenemase-Producing Enterobacteriaceae (CPE) and other antimicrobial-resistant organisms often include advice about screening patients coming from hospitals with a known resistance problem, to prevent introductions into new hospitals by shared patients. We argue that, despite being an efficient method of identifying cases, admission screening for introduction prevention is only effective if the absolute number of imported cases from other hospitals outnumbers the cases coming from the hospital’s own patient population, and therefore is only a feasible control strategy during the start of an epidemic. When determining whether import screening is still advisable, we therefore need to be continuously reminded of how Father Ted so eloquently summarised the principles of perspective: “These are small, but the ones out there are far away”.


Sign in / Sign up

Export Citation Format

Share Document