Comparison of Ti and Pt silicon carbide Schottky rectifiers

Author(s):  
Bhatnagar ◽  
Nakanishi ◽  
Mclarty ◽  
Baliga ◽  
Patnaik ◽  
...  
MRS Bulletin ◽  
2005 ◽  
Vol 30 (4) ◽  
pp. 299-304 ◽  
Author(s):  
T. Paul Chow

AbstractThe successful commercialization of unipolar Schottky rectifiers in the 4H polytype of silicon carbide has resulted in a market demand for SiC high-power switching devices. This article reviews recent progress in the development of high-voltage 4H-SiC bipolar power electronics devices.We also present the outstanding material and processing challenges, reliability concerns, and future trends in device commercialization.


2016 ◽  
Vol 858 ◽  
pp. 777-781 ◽  
Author(s):  
Andrei Konstantinov ◽  
Song Jinman ◽  
Sungmo Young ◽  
Brian Lee ◽  
Fredrik Allerstam ◽  
...  

Silicon carbide Schottky-barrier diode (SBD) rectifiers have been manufactured with low on-state voltages, high surge currents and high avalanche ruggedness. Non-destructive unclamped inductive switching currents of 188 A (mean) are achieved for the 1200 V 15 A rectifier. Very tight distribution of maximum sustained UIS current is confirmed. We relate improved avalanche ruggedness to bulk avalanche breakdown and show the breakdown pattern of the new Schottky rectifier being the same type as that for the p-n diode.


2019 ◽  
Vol 963 ◽  
pp. 539-543
Author(s):  
G.W.C Baker ◽  
Chun W. Chan ◽  
Tian Dai ◽  
A. Benjamin Renz ◽  
Fan Li ◽  
...  

This paper discusses the study of 4H Silicon Carbide (4H-SiC) Schottky rectifier structures based on the superjunction (SJ) principle. The effects of device geometry have been investigated to optimise the trade-off between breakdown voltage (VBD), specific on-resistance (RON,SP), and the ion-implantation fabrication window, so ensuring the final design is practically realisable. In this study, both full-SJ and semi-SJ (SSJ) layouts improve the VBD-RON,SP trade-off to below the 4H-SiC unipolar limit. In comparison to a conventional planar Schottky diode, full SJ structures, with p-pillars that traverse the full length of the n-drift region, have a 7x improvement in RON,SP for a 50-100 V reduction in VBD. In comparison, the SSJ structure is composed with the combination of the SJ structure and an n-bottom assist layer (BAL), which adds 2-μm of n-drift below the SJ pillars. The SSJ structure demonstrates a 5x improvement in RON,SP for a 300 V increase in VBD, for the same aspect ratio. Most favourably, the SSJ structure also has an ion-implantation processing window 60% higher than the full SJ device, offering better anti-charge-imbalance characteristics. In both full and semi layouts, a trench sidewall angled (α) at 80o was considered optimal, resulting in a slightly higher VBD and RON,SP, and a wider processing window, compared to vertical (90o) sidewalls.


2002 ◽  
Vol 81 (6) ◽  
pp. 1125-1127 ◽  
Author(s):  
F. Roccaforte ◽  
F. La Via ◽  
S. Di Franco ◽  
V. Raineri

Author(s):  
R. J. Lauf

Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain a layer of pyrolytic silicon carbide to act as a miniature pressure vessel and primary fission product barrier. Optimization of the SiC with respect to fuel performance involves four areas of study: (a) characterization of as-deposited SiC coatings; (b) thermodynamics and kinetics of chemical reactions between SiC and fission products; (c) irradiation behavior of SiC in the absence of fission products; and (d) combined effects of irradiation and fission products. This paper reports the behavior of SiC deposited on inert microspheres and irradiated to fast neutron fluences typical of HTGR fuel at end-of-life.


Author(s):  
K. B. Alexander ◽  
P. F. Becher

The presence of interfacial films at the whisker-matrix interface can significantly influence the fracture toughness of ceramic composites. The film may alter the interface debonding process though changes in either the interfacial fracture energy or the residual stress at the interface. In addition, the films may affect the whisker pullout process through the frictional sliding coefficients or the extent of mechanical interlocking of the interface due to the whisker surface topography.Composites containing ACMC silicon carbide whiskers (SiCw) which had been coated with 5-10 nm of carbon and Tokai whiskers coated with 2 nm of carbon have been examined. High resolution electron microscopy (HREM) images of the interface were obtained with a JEOL 4000EX electron microscope. The whisker geometry used for HREM imaging is described in Reference 2. High spatial resolution (< 2-nm-diameter probe) parallel-collection electron energy loss spectroscopy (PEELS) measurements were obtained with a Philips EM400T/FEG microscope equipped with a Gatan Model 666 spectrometer.


Author(s):  
L. A. Giannuzzi ◽  
C. A. Lewinsohn ◽  
C. E. Bakis ◽  
R. E. Tressler

The SCS-6 SiC fiber is a 142 μm diameter fiber consisting of four distinct regions of βSiC. These SiC regions vary in excess carbon content ranging from 10 a/o down to 5 a/o in the SiC1 through SiC3 region. The SiC4 region is stoichiometric. The SiC sub-grains in all regions grow radially outward from the carbon core of the fiber during the chemical vapor deposition processing of these fibers. In general, the sub-grain width changes from 50nm to 250nm while maintaining an aspect ratio of ~10:1 from the SiC1 through the SiC4 regions. In addition, the SiC shows a <110> texture, i.e., the {111} planes lie ±15° along the fiber axes. Previous has shown that the SCS-6 fiber (as well as the SCS-9 and the developmental SCS-50 μm fiber) undergoes primary creep (i.e., the creep rate constantly decreases as a function of time) throughout the lifetime of the creep test.


1980 ◽  
Vol 41 (C4) ◽  
pp. C4-111-C4-112 ◽  
Author(s):  
V. V. Makarov ◽  
T. Tuomi ◽  
K. Naukkarinen ◽  
M. Luomajärvi ◽  
M. Riihonen

1959 ◽  
Vol 111 (1-6) ◽  
pp. 142-153 ◽  
Author(s):  
V. G. Bhide ◽  
A. R. Verma
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document