Distributed self organising Electric Vehicle charge controller system: Peak power demand and grid load reduction with adaptive EV charging stations

Author(s):  
U. Reiner ◽  
C. Elsinger ◽  
T. Leibfried
Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1650 ◽  
Author(s):  
Bong-Gi Choi ◽  
Byeong-Chan Oh ◽  
Sungyun Choi ◽  
Sung-Yul Kim

Establishing electric vehicle supply equipment (EVSE) to keep up with the increasing number of electric vehicles (EVs) is the most realistic and direct means of promoting their spread. Using traffic data collected in one area; we estimated the EV charging demand and selected priority fast chargers; ranging from high to low charging demand. A queueing model was used to calculate the number of fast chargers required in the study area. Comparison of the existing distribution of fast chargers with that suggested by the traffic load eliminating method demonstrated the validity of our traffic-based location approach.


2019 ◽  
Vol 10 (2) ◽  
pp. 47 ◽  
Author(s):  
Yutong Zhao ◽  
Hong Huang ◽  
Xi Chen ◽  
Baoqun Zhang ◽  
Yiguo Zhang ◽  
...  

A charging load allocation strategy for Electric Vehicles (EVs) considering charging mode is proposed in this paper in order to solve the challenge and opportunity of large-scale grid-connected charging under the background of booming EV industry in recent years. Based on the peak-to-valley Time-of-Use (TOU) price, this strategy studies the grid load, charging cost and charging station revenue variation of EVs connected to the grid in different charging modes. In addition, this paper proposes an additional charging mechanism for charging stations to encourage EV owners to participate in the peak and valley reduction of the grid through coordinated charging. According to the example analysis, under the same charging demand conditions, the larger EV charging power will have a greater impact on the grid than the conventional charging power. This article collects additional service fees for car owners who are not involved in the coordinated charging. When the response charging ratio is less, the more total service charges are charged, which can compensate for the decline in the sales revenue of the charging station during the valley period. While having good economy, it can also encourage the majority of car owners to participate in the coordinated charging from the perspective of charging cost.


2021 ◽  
Vol 13 (6) ◽  
pp. 3528
Author(s):  
Phap Vu Minh ◽  
Sang Le Quang ◽  
Manh-Hai Pham

At present, the electric vehicle (EV) market is developing strongly and widely across many countries around the world. Increasing clean energy infrastructure for EVs is a possible solution to reduce greenhouse gas emissions and help improve air quality in urban areas. Electric vehicles charged by electricity from photovoltaic (PV) systems can produce less emissions than conventional EVs charged by the utility grid. Thus, the combination of solar power and EV charging stations is one of the possible methods to achieve sustainable development in the current EV market. EVs in cities in Vietnam have developed very quickly in recent times, but the charging station infrastructure is still very limited, and most existing charging stations use electricity from the utility grid. In this paper, the optimal configuration of PV-powered EV charging stations is analyzed technically and economically under different solar irradiation conditions in Vietnam. The study results show that the optimal configuration and investment efficiency of PV-powered EV charging stations in each urban area are greatly affected by the solar irradiation value and feed-in tariff (FIT) price of rooftop solar power. In Vietnam, a region with high solar irradiation, such as Ho Chi Minh, is more likely to invest in PV-powered EV charging stations than other areas with lower solar irradiation, such as Hanoi.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1910
Author(s):  
Syed Muhammad Arif ◽  
Tek Tjing Lie ◽  
Boon Chong Seet ◽  
Soumia Ayyadi ◽  
Kristian Jensen

This paper presents a state-of-the-art review of electric vehicle technology, charging methods, standards, and optimization techniques. The essential characteristics of Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) are first discussed. Recent research on EV charging methods such as Battery Swap Station (BSS), Wireless Power Transfer (WPT), and Conductive Charging (CC) are then presented. This is followed by a discussion of EV standards such as charging levels and their configurations. Next, some of the most used optimization techniques for the sizing and placement of EV charging stations are analyzed. Finally, based on the insights gained, several recommendations are put forward for future research.


Electric Vehicles (EV) are the world’s future transport systems. With the rise in pollutions and its effects on the environment, there has been a large scale movetowards electrical vehicles. But the plug point availability for charging is the serious problem faced by the mostof Electric Vehicle consumers. Therefore, there is a definite need to move from the GRID based/connected charging stations to standalone off-grid stations for charging the Electric Vehicles. The objective of this paper is to arrive at the best configuration or mix of the renewable resources and energy storage systems along with conventional Diesel Generator set which together works in offgrid for Electric Vehicle charging. As aconclusion, by utilizing self-sustainable off-grid power generation technology, the availability of EV charging stations in remote localities at affordable price can be made and mainly it reduces burden on the existing electrical infrastructure.


2018 ◽  
Vol 1 ◽  
pp. 1-6 ◽  
Author(s):  
Yongqin Zhang ◽  
Kory Iman

Fuel-based transportation is one of the major contributors to poor air quality in the United States. Electric Vehicle (EV) is potentially the cleanest transportation technology to our environment. This research developed a spatial suitability model to identify optimal geographic locations for installing EV charging stations for travelling public. The model takes into account a variety of positive and negative factors to identify prime locations for installing EV charging stations in Wasatch Front, Utah, where automobile emission causes severe air pollution due to atmospheric inversion condition near the valley floor. A walkable factor grid was created to store index scores from input factor layers to determine prime locations. 27 input factors including land use, demographics, employment centers etc. were analyzed. Each factor layer was analyzed to produce a summary statistic table to determine the site suitability. Potential locations that exhibit high EV charging usage were identified and scored. A hot spot map was created to demonstrate high, moderate, and low suitability areas for installing EV charging stations. A spatially well distributed EV charging system was then developed, aiming to reduce “range anxiety” from traveling public. This spatial methodology addresses the complex problem of locating and establishing a robust EV charging station infrastructure for decision makers to build a clean transportation infrastructure, and eventually improve environment pollution.


2019 ◽  
Vol 125 ◽  
pp. 195-220 ◽  
Author(s):  
Md Abdul Quddus ◽  
Mesut Yavuz ◽  
John M. Usher ◽  
Mohammad Marufuzzaman

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4211
Author(s):  
Manu Lahariya ◽  
Dries F. Benoit ◽  
Chris Develder

Electric vehicle (EV) charging stations have become prominent in electricity grids in the past few years. Their increased penetration introduces both challenges and opportunities; they contribute to increased load, but also offer flexibility potential, e.g., in deferring the load in time. To analyze such scenarios, realistic EV data are required, which are hard to come by. Therefore, in this article we define a synthetic data generator (SDG) for EV charging sessions based on a large real-world dataset. Arrival times of EVs are modeled assuming that the inter-arrival times of EVs follow an exponential distribution. Connection time for EVs is dependent on the arrival time of EV, and can be described using a conditional probability distribution. This distribution is estimated using Gaussian mixture models, and departure times can calculated by sampling connection times for EV arrivals from this distribution. Our SDG is based on a novel method for the temporal modeling of EV sessions, and jointly models the arrival and departure times of EVs for a large number of charging stations. Our SDG was trained using real-world EV sessions, and used to generate synthetic samples of session data, which were statistically indistinguishable from the real-world data. We provide both (i) source code to train SDG models from new data, and (ii) trained models that reflect real-world datasets.


2013 ◽  
Vol 325-326 ◽  
pp. 628-631
Author(s):  
Yu Tian Sun ◽  
Hua Dong Zhang ◽  
Zhi Hui Li ◽  
Jian Xiang Li ◽  
Cheng Qi ◽  
...  

Electric vehicle charging stations are high-power load after they are accessed to the grid. Therefore it may result in the redistribution of the grid load, which leads to the change of the power flow and the grid loss increases. The load model of charging stations is established in a typical distribution network model in this paper. The impact on the distribution network power flow after the electric vehicle charging stations accessed to the grid is calculated. And then some measures to reduce the network loss are brought up, which are proved by relational calculation cases.


Sign in / Sign up

Export Citation Format

Share Document