Study on the utilization of fly ash as raw material for architectonic tile

Author(s):  
Janchiviin Budsuren ◽  
Kazuo Yamana
Keyword(s):  
Fly Ash ◽  
2013 ◽  
Vol 12 (2) ◽  
pp. 337-342 ◽  
Author(s):  
Firuta Goga ◽  
Roxana Dudric ◽  
Calin Cormos ◽  
Florica Imre ◽  
Liliana Bizo ◽  
...  

2021 ◽  
Vol 5 (6) ◽  
pp. 151
Author(s):  
Mustapha El Kanzaoui ◽  
Chouaib Ennawaoui ◽  
Saleh Eladaoui ◽  
Abdelowahed Hajjaji ◽  
Abdellah Guenbour ◽  
...  

Given the amount of industrial waste produced and collected in the world today, a recycling and recovery process is needed. The study carried out on this subject focuses on the valorization of one of these industrial wastes, namely the fly ash produced by an ultra-supercritical coal power plant. This paper describes the use and recovery of fly ash as a high percentage reinforcement for the development of a new high-performance composite material for use in various fields. The raw material, fly ash, comes from the staged combustion of coal, which occurs in the furnace of an ultra-supercritical boiler of a coal-fired power plant. Mechanical compression, thermal conductivity, and erosion tests are used to study the mechanical, thermal, and erosion behavior of this new composite material. The mineralogical and textural analyses of samples were characterized using Scanning Electron Microscopy (SEM). SEM confirmed the formation of a new composite by a polymerization reaction. The results obtained are very remarkable, with a high Young’s modulus and a criterion of insulation, which approves the presence of a potential to be exploited in the different fields of materials. In conclusion, the composite material presented in this study has great potential for building material and could represent interesting candidates for the smart city.


Author(s):  
Miljana Mirković ◽  
Ljiljana Kljajević ◽  
Snežana Nenadović ◽  
Sabina Dolenec ◽  
Katarina Šter ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2741
Author(s):  
Pengcheng Lv ◽  
Ruihong Meng ◽  
Zhongyang Mao ◽  
Min Deng

In this study, the hydrated sodium aluminosilicate material was synthesized by one-step hydrothermal alkaline desilication using fly ash (FA) as raw material. The synthesized materials were characterized by XRD, XRF, FT-IR and SEM. The characterization results showed that the alkali-soluble desilication successfully had synthesized the sodium aluminosilicate crystalline (N-A-S-H) phase of sodalite-type (SOD), and the modified material had good ionic affinity and adsorption capacity. In order to figure out the suitability of SOD as an adsorbent for the removal of ammonium and phosphorus from wastewater, the effects of material dosing, contact time, ambient pH and initial solute concentration on the simultaneous removal of ammonium and phosphorus are investigated by intermittent adsorption tests. Under the optimal adsorption conditions, the removal rate of ammonium was 73.3%, the removal rate of phosphate was 85.8% and the unit adsorption capacity reached 9.15 mg/L and 2.14 mg/L, respectively. Adsorption kinetic studies showed that the adsorption of ammonium and phosphorus by SOD was consistent with a quasi-secondary kinetic model. The adsorption isotherm analysis showed that the equilibrium data were in good agreement with the Langmuir and Freundlich model. According to thermodynamic calculations, the adsorption of ammonium and phosphorus was found to be a heat-absorbing and spontaneous process. Therefore, the preparation of SOD by modified FA has good adsorption properties as adsorbent and has excellent potential for application in the removal of contaminants from wastewater.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3576
Author(s):  
Jan Wrona ◽  
Witold Żukowski ◽  
Dariusz Bradło ◽  
Piotr Czupryński

Aluminosilicate microspheres are a valuable fraction of coal fly ash with diverse applications due to their low density. Currently, there is no efficient and ecologically rational method of cenosphere recovery from fly ash. A combination of dry methods for the recovery of both fine ash particles and aluminosilicate microspheres from coal fly ash is presented. It is comprised of fluidised bed separation followed by screening and pneumatic separation in a free-fall air chamber. Fluidised bed separation was assisted by a mechanical activator to prevent agglomeration. This step reduced the portion of material that required further treatment by 52–55 wt.%, with the recovery of microspheres exceeding 97%. Then, the concentrates were individually subjected to pneumatic separation. The final separation product for the fly ash containing 0.64 wt.% cenospheres was a cenosphere concentrate that constituted about 17 wt.% of the initial fly ash. The recovery of cenospheres was around 81%. Usage of a combination of dry methods allowed for maintaining almost 83 wt.% of the raw material in its dry form. Furthermore, the produced fly ash grain fractions could be used for different industrial purposes.


2017 ◽  
Vol 20 (2) ◽  
pp. 1006-1015 ◽  
Author(s):  
R. C. E. Modolo ◽  
L. Senff ◽  
V. M. Ferreira ◽  
L. A. C. Tarelho ◽  
C. A. M. Moraes

2021 ◽  

Concrete is the most versatile, durable and reliable material and is the most used building material. It requires large amounts of Portland cement which has environmental problems associated with its production. Hence, an alternative concrete – geopolymer concrete is needed. The general aim of this book is to make significant contributions in understanding and deciphering the mechanisms of the realization of the alkali-activated fly ash-based geopolymer concrete and, at the same time, to present the main characteristics of the materials, components, as well as the influence that they have on the performance of the mechanical properties of the concrete. The book deals with in-depth research of the potential recovery of fly ash and using it as a raw material for the development of new construction materials, offering sustainable solutions to the construction industry.


2018 ◽  
Vol 78 (11) ◽  
pp. 2321-2327 ◽  
Author(s):  
Yan Ma ◽  
Zhihuan Zhao ◽  
Jimin Fan ◽  
Zhanyong Gu ◽  
Bin Zhang ◽  
...  

Abstract Using tetra-n-butyl titanate as raw material and fly ash cenospheres (FAC) as carrier, the photocatalysts of Ag-TON/FAC were successfully prepared by solvothermal and in-situ hydrolysis method. These visible light photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), fluorescence spectroscopy (FL) and UV–vis diffuse reflectance spectra (DRS). In this study, methyl orange and ciprofloxacin were used as wastewater degradation targets to investigate the effect of the amount of titanium dioxide and the amount of Ag doping on the activity of photocatalysts. On the basis of this, the optimal ratio of TiO2 to FAC was 2:1 and the optimum doping ratio of Ag was determined to be 15 wt.%. The composite photocatalysts dispersed uniformly and were easy to recycle and reuse, which were benefits in fully utilizing the solar energy. The degradation efficiency remained at more than 60% after being renewed five times for MO and ciprofloxacin. The photocatalysts of Ag-TON/FAC can reduce the environmental burden caused by FAC also.


2020 ◽  
Vol 4 (2) ◽  
Author(s):  
Dwi Septiyana Sari ◽  
◽  
Susanti Sundari

Abstract This study discusses the use of fly ash waste from coal burning on the manufacture of PCC (Portland composite cement) at PT. XYZ Lampung. The purpose of this research is to look at the technical studies and the efficiency of raw materials in the use of fly ash in cement making, in this case PCC cement (Portland Composite Cement). The steps taken in analyzing the data in this study were viewed from a technical aspect by means of a physical test, namely the cement compressive strength test at the age of 3 days, 7 days, and 28 days using the Compression Testing Machine. This test was conducted to see the comparison of the compressive strength of PCC cement using limestone and fly ash as raw materials, then calculate the difference in raw material costs in the year before and after the replacement of limestone with fly ash. The results showed that cement with the addition of fly ash after 3 days, 7 days and 28 days had an increased compressive strength value, which increased 21.69%, 16.07% and 8.05% respectively of the compressive strength of cement using limestone. The use of fly ash as a substitute for limestone has an effect on the cost of raw materials, where the difference between the cost of raw materials in 2019 and the cost of raw materials in 2018 is Rp. 39,440,952,074.


2018 ◽  
Vol 221 ◽  
pp. 220-223 ◽  
Author(s):  
L. Chávez-Guerrero ◽  
J.A. Salinas-Montelongo ◽  
A. Esquivias-Fierro
Keyword(s):  
Fly Ash ◽  

Sign in / Sign up

Export Citation Format

Share Document