Copper Wire Bond Optimization for Power Devices

Author(s):  
T. Pinili ◽  
R. Watkins ◽  
W. Qin ◽  
G. Brizar ◽  
J. De Clerq ◽  
...  
Keyword(s):  
2019 ◽  
Vol 44 (1) ◽  
pp. 985-989
Author(s):  
Tan Boo Wei ◽  
Ken Niu
Keyword(s):  

2012 ◽  
Vol 622-623 ◽  
pp. 647-651 ◽  
Author(s):  
Z. Sauli ◽  
V. Retnasamy ◽  
S. Taniselass ◽  
A.H.M. Shapri ◽  
R. Vairavan

Wire bonding process is first level interconnection technology used in the semiconductor packaging industry. The wire bond shear tests are used in the industry to examine the bond strength and reliability of the bonded wires. Hence, in this study thesimulation on wire bond shear test is performed on a sharp groove surface bond pad. ANSYS ver 11 was used to perform the simulation. The stress response of the bonded wires are investigated.The effects of three wire materials gold(Au), aluminum(Al) and copper(Cu) on the stress response during shear test were examined. The simulation results showed that copper wire bond induces highest stress and gold wire exhibits the least stress response.


Author(s):  
Pradeep Lall ◽  
Sungmo Jung

Abstract Electronics in automotive underhood environments may be subjected to high temperature in the range of 125–200°C. Transition to electric vehicles has resulted in need for electronics capable of operation under high voltage bias. Automotive electronics has simultaneously transitioned to copper wire-bond from gold wire-bond for first-level interconnections. Copper has a smaller process window and a higher propensity for corrosion in comparison with gold wire bonds. There is scarce information on the reliability of copper wire bonds in presence of high voltage bias under operation at high temperature. In this paper, a multiphysics model for micro galvanic corrosion in the presence of chlorine is introduced. The diffusion cell is used to measure the diffusivity of chlorine in different pH values and different temperatures. Diffusivity measurements are incorporated into the 3D ionic transport model to study the effect of different environmental factors on the transport rate of chlorine. The tafel parameters for copper, aluminum and intermetallics have been extracted through measurements of the polarization curves. The multiple physics of ionic transport in presence of concentration gradient, potential gradient is coupled with the galvanic corrosion.


Author(s):  
Pradeep Lall ◽  
Yihua Luo

Escalation of the expense of gold has resulted in industry interest in use of copper as alternative wire bonds interconnect material. Copper wire has the advantage of lower price and comparable electrical resistance to gold wire. In this paper, 32-pin copper-aluminum wire bond chip scale packages are aged at three types of environment conditions separately. Environmental conditions included: 200°C for 10 days, 85°C and 85% RH for 8 weeks and −40°C to 125°C for 500 thermal cycles. The resistances of the wire bond are obtained every 24 hours for 200°C environment, every 7 days for 85C/85RH environment and every 5 days (50 thermal cycles) for the thermal cycling environment. A leading indicator has been developed in order to monitor the progression effect of the different thermal aging condition on the package and prognosticate remaining useful life based on the resistance spectroscopy. The Cu-Al wire bond resistance has been measured using a modified Wheatstone bridge. It has been shown previously that precise resistance spectroscopy is able to offer the failure of a leading indicator prior to the traditional definition of failure. The prognostic health management is qualified to be an efficient and accuracy tool for assessment of the remaining life of the wire bond. The ability to predict the remaining useful life of Cu-Al wire bond provides several advantages, including increasing safety by providing warning ahead of time before the failure.


Author(s):  
Pradeep Lall ◽  
Yihua Luo ◽  
Luu Nguyen

The increasing price of gold has resulted in industry interest in use of copper as alternative wire bonds interconnect material. Copper wire has the advantages of the lower cost, lower thermal resistivity, lower electrical resistivity, higher mechanical strength and higher deformation stability over the gold wire. In spite of the upside above, the Cu-Al wire bond is susceptible to the electrolytic corrosion and the reliability of Cu-Al wire bond is of great concern. Typical electronic molding compounds are hydrophilic and absorb moisture when exposed to humid environmental conditions. EMC contain ionic contaminants including chloride ions as a result of the chemical synthesis of the subcomponents of the resin, etching of metallization and the decomposition of the die-attach glue. The presence of moisture in the operating environment of semiconductor package makes the ion more mobile in the EMC. The migration of chloride ions to the Cu-Al interface may induce electrolytic corrosion inside the package causing degradation of the bond interface resulting in eventual failure. The rate at which the corrosion happens in the microelectronic packages is dependent upon the rate at which the ions transport through the EMC in addition to the reaction rate at the interface. In this effort, a multiphysics model for galvanic corrosion in the presence of chloride has been presented. The contaminant diffusion along with the corrosion kinetics has been modeled. In addition, contaminated samples with known concentration of KCl contaminant have been subjected to the temperature humidity conditions of 130°C/100RH. The resistance of the Cu-Al interconnects in the PARR test have been monitored periodically using resistance spectroscopy. The diffusion coefficients of chloride ion has been measured in the electronic molding compound at various temperatures using two methods including diffusion cell and inductively coupled plasma (ICPMS). Moisture ingress into the EMC has been quantified through measurements of the weight gain in the EMC as a function of time. Tafel parameters including the open circuit potential and the slope of the polarization curve has been measured for both copper, aluminum under different concentrations of the ionic species and pH values in the EMC. The measurements have been incorporated into the COMSOL model to predict the corrosion current at the Cu-Al bond pad. The model predictions have been correlated with experimental data.


Author(s):  
Meijiang Song ◽  
G.L. Gong ◽  
J.Z. Yao ◽  
Sean Xu ◽  
Stephen Lee ◽  
...  
Keyword(s):  

Author(s):  
Pradeep Lall ◽  
Shantanu Deshpande ◽  
Luu Nguyen

Gold wire bonding has been widely used as first-level interconnect in semiconductor packaging. The increase in the gold price has motivated the industry search for alternative to the gold wire used in wire bonding and the transition to copper wire bonding technology. Potential advantages of transition to Cu-Al wire bond system includes low cost of copper wire, lower thermal resistivity, lower electrical resistivity, higher deformation strength, damage during ultrasonic squeeze, and stability compared to gold wire. However, the transition to the copper wire brings along some trade-offs including poor corrosion resistance, narrow process window, higher hardness, and potential for cratering. Formation of excessive Cu-Al intermetallics may increase electrical resistance and reduce the mechanical bonding strength. Current state-of-art for studying the Cu-Al system focuses on accumulation of statistically significant number of failures under accelerated testing. In this paper, a new approach has been developed to identify the occurrence of impending apparently-random defect fall-outs and pre-mature failures observed in the Cu-Al wirebond system. The use of intermetallic thickness, composition and corrosion as a leading indicator of failure for assessment of remaining useful life for Cu-al wirebond interconnects has been studied under exposure to high temperature and temperature-humidity. Damage in wire bonds has been studied using x-ray Micro-CT. Microstructure evolution was studied under isothermal aging conditions of 150°C, 175°C, and 200°C till failure. Activation energy was calculated using growth rate of intermetallic at different temperatures. Effect of temperature and humidity on Cu-Al wirebond system was studied using Parr Bomb technique at different elevated temperature and humidity conditions (110°C/ 100%RH, 120°C/ 100%RH, 130°C/ 100%RH) and failure mechanism was developed. The present methodology uses evolution of the IMC thickness, composition in conjunction with the Levenberg-Marquardt algorithm to identify accrued damage in wire bond subjected to thermal aging. The proposed method can be used for quick assessment of Cu-Al parts to ensure manufactured part consistency through sampling.


Sign in / Sign up

Export Citation Format

Share Document