KR-Net: A Dependable Visual Kidnap Recovery Network for Indoor Spaces

Author(s):  
Janghun Hyeon ◽  
Dongwoo Kim ◽  
Bumchul Jang ◽  
Hyunga Choi ◽  
Dong Hoon Yi ◽  
...  
Keyword(s):  
Author(s):  
Prince U.C. Songwa ◽  
Aaqib Saeed ◽  
Sachin Bhardwaj ◽  
Thijs W. Kruisselbrink ◽  
Tanir Ozcelebi

High-quality lighting positively influences visual performance in humans. The experienced visual performance can be measured using desktop luminance and hence several lighting control systems have been developed for its quantification. However, the measurement devices that are used to monitor the desktop luminance in existing lighting control systems are obtrusive to the users. As an alternative, ceiling-based luminance projection sensors are being used recently as these are unobtrusive and can capture the direct task area of a user. The positioning of these devices on the ceiling requires to estimate the desktop luminance in the user's vertical visual field, solely using ceiling-based measurements, to better predict the experienced visual performance of the user. For this purpose, we present LUMNET, an approach for estimating desktop luminance with deep models through utilizing supervised and self-supervised learning. Our model learns visual representations from ceiling-based images, which are collected in indoor spaces within the physical vicinity of the user to predict average desktop luminance as experienced in a real-life setting. We also propose a self-supervised contrastive method for pre-training LUMNET with unlabeled data and we demonstrate that the learned features are transferable onto a small labeled dataset which minimizes the requirement of costly data annotations. Likewise, we perform experiments on domain-specific datasets and show that our approach significantly improves over the baseline results from prior methods in estimating luminance, particularly in the low-data regime. LUMNET is an important step towards learning-based technique for luminance estimation and can be used for adaptive lighting control directly on-device thanks to its minimal computational footprint with an added benefit of preserving user's privacy.


Author(s):  
Roberto A. Sussman ◽  
Eliana Golberstein ◽  
Riccardo Polosa

We discuss the implications of possible contagion of COVID-19 through e-cigarette aerosol (ECA) for prevention and mitigation strategies during the current pandemic. This is a relevant issue when millions of vapers (and smokers) must remain under indoor confinement and/or share public outdoor spaces with non-users. The fact that the respiratory flow associated with vaping is visible (as opposed to other respiratory activities) clearly delineates a safety distance of 1–2 m along the exhaled jet to prevent direct exposure. Vaping is a relatively infrequent and intermittent respiratory activity for which we infer a mean emission rate of 79.82 droplets per puff (6–200, standard deviation 74.66) comparable to mouth breathing, it adds into shared indoor spaces (home and restaurant scenarios) a 1% extra risk of indirect COVID-19 contagion with respect to a “control case” of existing unavoidable risk from continuous breathing. As a comparative reference, this added relative risk increases to 44–176% for speaking 6–24 min per hour and 260% for coughing every 2 min. Mechanical ventilation decreases absolute emission levels but keeps the same relative risks. As long as direct exposure to the visible exhaled jet is avoided, wearing of face masks effectively protects bystanders and keeps risk estimates very low. As a consequence, protection from possible COVID-19 contagion through vaping emissions does not require extra interventions besides the standard recommendations to the general population: keeping a social separation distance of 2 m and wearing of face masks.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
João Gaspar Ramôa ◽  
Vasco Lopes ◽  
Luís A. Alexandre ◽  
S. Mogo

AbstractIn this paper, we propose three methods for door state classification with the goal to improve robot navigation in indoor spaces. These methods were also developed to be used in other areas and applications since they are not limited to door detection as other related works are. Our methods work offline, in low-powered computers as the Jetson Nano, in real-time with the ability to differentiate between open, closed and semi-open doors. We use the 3D object classification, PointNet, real-time semantic segmentation algorithms such as, FastFCN, FC-HarDNet, SegNet and BiSeNet, the object detection algorithm, DetectNet and 2D object classification networks, AlexNet and GoogleNet. We built a 3D and RGB door dataset with images from several indoor environments using a 3D Realsense camera D435. This dataset is freely available online. All methods are analysed taking into account their accuracy and the speed of the algorithm in a low powered computer. We conclude that it is possible to have a door classification algorithm running in real-time on a low-power device.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3493
Author(s):  
Gahyeon Lim ◽  
Nakju Doh

Remarkable progress in the development of modeling methods for indoor spaces has been made in recent years with a focus on the reconstruction of complex environments, such as multi-room and multi-level buildings. Existing methods represent indoor structure models as a combination of several sub-spaces, which are constructed by room segmentation or horizontal slicing approach that divide the multi-room or multi-level building environments into several segments. In this study, we propose an automatic reconstruction method of multi-level indoor spaces with unique models, including inter-room and inter-floor connections from point cloud and trajectory. We construct structural points from registered point cloud and extract piece-wise planar segments from the structural points. Then, a three-dimensional space decomposition is conducted and water-tight meshes are generated with energy minimization using graph cut algorithm. The data term of the energy function is expressed as a difference in visibility between each decomposed space and trajectory. The proposed method allows modeling of indoor spaces in complex environments, such as multi-room, room-less, and multi-level buildings. The performance of the proposed approach is evaluated for seven indoor space datasets.


2021 ◽  
pp. 095745652110307
Author(s):  
Massimiliano Masullo ◽  
Gennaro Ruggiero ◽  
Daniel Alvarez Fernandez ◽  
Tina Iachini ◽  
Luigi Maffei

Previous evidence has shown that exposure to urban noise negatively influences some cognitive abilities (i.e. verbal fluency and delayed recall of prose memory) of people in indoor spaces. However, long-standing literature in the cognitive domain has reported that men and women can show different performance on cognitive tasks. Here, we aimed to investigate if and how different patterns of perceived urban noises in indoor environments could affect male and female participants’ cognitive abilities. Ambisonic sound recordings representing scenarios with varying noise patterns (low, medium and high variability) were acquired with an open window at three dwellings in a southern Italian city. As a control condition, the recordings were caught inside a quiet room. While exposed to theses four auditory conditions, participants had to perform cognitive tasks assessing free verbal memory recall, auditory–verbal recognition and working memory. The results show that male and female participants have a different tolerance to noise patterns. Women overperform men on verbal tasks, while the contrary effect emerges with men outperforming women on visuospatial working memory tasks.


Author(s):  
Shamia Hoque ◽  
Firoza Omar

Cross-contamination between occupants in an indoor space may occur due to transfer of infectious aerosols. Computational fluid dynamics (CFD) provides detailed insight into particle transport in indoor spaces. However, such simulations are site-specific. This study couples CFD with statistical moments and establishes a framework that transitions site-specific results to generating guidelines for designing “healthy” indoor spaces. Eighteen cases were simulated, and three parameters were assessed: inlet/outlet location, air changes per hour, and the presence/absence of desks. Aerosol release due to a simulated “sneeze” in a two-dimensional ventilated space was applied as a test case. Mean, standard deviation, and skewness of the velocity profiles and particle locations gave an overall picture of the spread and movement of the air flow in the domain. A parameter or configuration did not dominate the values, confirming the significance of considering the combined influence of multiple parameters for determining localized air-flow characteristics. Particle clustering occurred more when the inlet was positioned above the outlet. The particle dispersion pattern could be classified into two time zones: “near time”, <60 s, and “far time”, >120 s. Based on dosage, the 18 cases were classified into three groups ranging from worst case scenario to best case scenario.


Robotica ◽  
2016 ◽  
Vol 35 (5) ◽  
pp. 1176-1191
Author(s):  
Dugan Um ◽  
Dongseok Ryu

SUMMARYAs various robots are anticipated to coexist with humans in the near future, safe manipulation in unknown, cluttered environments becomes an important issue. Manipulation in an unknown environment, however, has been proven to be NP-Hard and the risk of unexpected human--robot collision hampers the dawning of the era of human--robot coexistence. We propose a non-contact-based sensitive skin as a means to provide safe manipulation hardware and interleaving planning between the workspace and the configuration space as software to solve manipulation problems in unknown, crowded environments. Novelty of the paper resides in demonstration of real time and yet complete path planning in an uncertain and crowded environment. To that end, we introduce the framework of the sensor-based interleaving planner (SBIP) whereby search completeness and safe manipulation are both guaranteed in cluttered environments. We study an interleaving mechanism between sensation in a workspace and execution in the corresponding configuration space for real-time planning in uncertain environments, thus the name interleaving planner implies.Applications of the proposed system include manipulators of a humanoid robot, surgical manipulators, and robotic manipulators working in hazardous and uncertain environments such as underwater, unexplored planets, and unstructured indoor spaces.


Sign in / Sign up

Export Citation Format

Share Document