A low-noise fully-differential open-loop interface for high-G capacitive micro-accelerometers with 112.2 dB dynamic range

Author(s):  
Meng Zhao ◽  
Zhongjian Chen ◽  
Zhaofeng Huang ◽  
Guangyi Chen ◽  
Wengao Lu ◽  
...  
2015 ◽  
Vol 25 (03) ◽  
pp. 1640019 ◽  
Author(s):  
Daniel Arbet ◽  
Gabriel Nagy ◽  
Martin Kováč ◽  
Viera Stopjaková

In this paper, a fully differential difference amplifier (FDDA) designed in 0.35[Formula: see text][Formula: see text]m CMOS technology is presented. The proposed amplifier reaches high dynamic range (DR) and low input referred noise. Comparison of noise performance of the proposed FDDA to an ordinary differential amplifier has been performed. Achieved results prove that the developed amplifier circuit can be advantageously used in applications that require a fully differential signal. Then, simulation results have been verified by the measurement of prototyped chips. In our work, the proposed amplifier was experimentally employed in the analog frontend of the readout interface (RI) for a Micro-Electro-Mechanical-Systems (MEMS) capacitive microphone.


2014 ◽  
Vol 23 (09) ◽  
pp. 1450124 ◽  
Author(s):  
SOHEYL ZIABAKHSH ◽  
HOSEIN ALAVI-RAD ◽  
MORTEZA ALINIA AHANDANI ◽  
MUSTAPHA C. E. YAGOUB

In this paper, we optimized the performance of a 2.4 GHz variable gain low-noise amplifier for WLAN applications which provides high dynamic range with relatively low power consumption. First, the differential evolution algorithm was used to optimize the width of input transistors, then the tunable on-chip switching stage method was applied to control the amplifier gain when the input signal increases. The optimization was performed in terms of gain, noise figure (NF), IIP3 and power dissipation. The LNA has achieved a variable gain from 16.55 to 20.45 dB with excellent NF between 1.63 and 1.74 dB. Furthermore, the proposed circuit achieves a third order input intercept point of 6.6 dBm. It consumes only 10 mW from a 1.5 V supply.


2020 ◽  
Vol 64 (3) ◽  
pp. 30504-1-30504-9
Author(s):  
Lamei Di ◽  
Hong Liu ◽  
Ruyi Wei ◽  
Nianzu Qiao ◽  
Shasha Chen

Abstract The search for exoplanets is a focal topic in astronomy. Since the signal from the detected target is very weak, the imaging system needs to have ultra-low readout noise. Therefore, a low noise charge-coupled diode (CCD) imaging system for exoplanet search (LNCIS) is proposed. Based on the area array CCD (TH7888A), the circuit and timing drive of LNCIS are designed. Especially, the application of correlation dual sampling (CDS) and asynchronous first-in, first-out (FIFO) memory can effectively suppress the correlation noise of the image signal. Moreover, this article proposes a fully differential double correlation sampling method, which can achieve better sampling effect and can better eliminate common-mode noise, improve dynamic range, and achieve high-quality image signal output. In addition, an independent counting method for adjusting the exposure time is proposed, which satisfies the requirements of the long exposure time of the imaging system, so that the CCD can be provided an independent and adjustable exposure time in the photosensitive stage. The LNCIS uses the FPGA (ZYNQ7000) as the core control device to produce the timing according to the function of the system. Finally, the experimental results show that the real-time image acquisition is achieved under the condition that the CCD readout clock frequency is 20 MHz. It is verified that the circuit and timing drive of the imaging system can meet the design requirements.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4268
Author(s):  
Hongzhi Ouyang ◽  
Xueling Yao ◽  
Jingliang Chen

Transient magnetic field sensors are used in various electromagnetic environment measurement scenarios. In this paper, a novel magnetic field sensor based on a digital integrator was developed. The antenna was a small B-DOT loop. It was designed optimally for the simulation. The magnetic field signal was digitally integrated with the improved Al-Alaoui algorithm, resulting in less integration error. To compensate for the bandwidth loss of the optical fiber system, we specially designed an FIR (finite impulse response) filter for frequency compensation. The circuit was described, and the transimpedance amplifier was specially designed to ensure the low noise characteristic of the receiver. The sensitivity of the sensor was calibrated at 68.2 A·m−1/mV, the dynamic range was 50 dB (1–300 kA/m), the linear correlation coefficient was 0.96, and the bandwidth was greater than 100 MHz. It was tested and verified under the action of an A-type lightning current. The sensor exhibited high-precision performance and flat amplitude-frequency characteristics. Therefore, it is suitable for lightning positioning, partial discharge testing, electromagnetic compatibility management, and other applications.


2005 ◽  
Vol 21 (1) ◽  
pp. 91-124 ◽  
Author(s):  
John R. Evans ◽  
Robert H. Hamstra ◽  
Christoph Kündig ◽  
Patrick Camina ◽  
John A. Rogers

The ability of a strong-motion network to resolve wavefields can be described on three axes: frequency, amplitude, and space. While the need for spatial resolution is apparent, for practical reasons that axis is often neglected. TREMOR is a MEMS-based accelerograph using wireless Internet to minimize lifecycle cost. TREMOR instruments can economically augment traditional ones, residing between them to improve spatial resolution. The TREMOR instrument described here has dynamic range of 96 dB between ±2 g, or 102 dB between ±4 g. It is linear to <1% of full scale (FS), with a response function effectively shaped electronically. We developed an economical, very low noise, accurate (<1%FS) temperature compensation method. Displacement is easily recovered to 10-cm accuracy at full bandwidth, and better with care. We deployed prototype instruments in Oakland, California, beginning in 1998, with 13 now at mean spacing of ∼3 km—one of the most densely instrumented urban centers in the United States. This array is among the quickest in returning (PGA, PGV, Sa) vectors to ShakeMap, ∼75 to 100 s. Some 13 events have been recorded. A ShakeMap and an example of spatial variability are shown. Extensive tests of the prototypes for a commercial instrument are described here and in a companion paper.


2016 ◽  
Vol 23 (1) ◽  
pp. 214-218 ◽  
Author(s):  
G. Bortel ◽  
G. Faigel ◽  
M. Tegze ◽  
A. Chumakov

Kossel line patterns contain information on the crystalline structure, such as the magnitude and the phase of Bragg reflections. For technical reasons, most of these patterns are obtained using electron beam excitation, which leads to surface sensitivity that limits the spatial extent of the structural information. To obtain the atomic structure in bulk volumes, X-rays should be used as the excitation radiation. However, there are technical problems, such as the need for high resolution, low noise, large dynamic range, photon counting, two-dimensional pixel detectors and the small spot size of the exciting beam, which have prevented the widespread use of Kossel pattern analysis. Here, an experimental setup is described, which can be used for the measurement of Kossel patterns in a reasonable time and with high resolution to recover structural information.


2018 ◽  
Vol 27 (07) ◽  
pp. 1850104 ◽  
Author(s):  
Yuwadee Sundarasaradula ◽  
Apinunt Thanachayanont

This paper presents the design and realization of a low-noise, low-power, wide dynamic range CMOS logarithmic amplifier for biomedical applications. The proposed amplifier is based on the true piecewise linear function by using progressive-compression parallel-summation architecture. A DC offset cancellation feedback loop is used to prevent output saturation and deteriorated input sensitivity from inherent DC offset voltages. The proposed logarithmic amplifier was designed and fabricated in a standard 0.18[Formula: see text][Formula: see text]m CMOS technology. The prototype chip includes six limiting amplifier stages and an on-chip bias generator, occupying a die area of 0.027[Formula: see text]mm2. The overall circuit consumes 9.75[Formula: see text][Formula: see text]W from a single 1.5[Formula: see text]V power supply voltage. Measured results showed that the prototype logarithmic amplifier exhibited an 80[Formula: see text]dB input dynamic range (from 10[Formula: see text][Formula: see text]V to 100[Formula: see text]mV), a bandwidth of 4[Formula: see text]Hz–10[Formula: see text]kHz, and a total input-referred noise of 5.52[Formula: see text][Formula: see text]V.


2013 ◽  
Vol 6 (2) ◽  
pp. 109-113 ◽  
Author(s):  
Andrea Malignaggi ◽  
Amin Hamidian ◽  
Georg Boeck

The present paper presents a fully differential 60 GHz four stages low-noise amplifier for wireless applications. The amplifier has been optimized for low-noise, high-gain, and low-power consumption, and implemented in a 90 nm low-power CMOS technology. Matching and common-mode rejection networks have been realized using shielded coplanar transmission lines. The amplifier achieves a peak small-signal gain of 21.3 dB and an average noise figure of 5.4 dB along with power consumption of 30 mW and occupying only 0.38 mm2pads included. The detailed design procedure and the achieved measurement results are presented in this work.


Sign in / Sign up

Export Citation Format

Share Document