A fully integrated transformer-based front-end architecture for wireless transceivers

Author(s):  
I. Bhatti ◽  
R. Roufoogaran ◽  
J. Castaneda
2021 ◽  
Vol 11 (2) ◽  
pp. 22
Author(s):  
Umberto Ferlito ◽  
Alfio Dario Grasso ◽  
Michele Vaiana ◽  
Giuseppe Bruno

Charge-Based Capacitance Measurement (CBCM) technique is a simple but effective technique for measuring capacitance values down to the attofarad level. However, when adopted for fully on-chip implementation, this technique suffers output offset caused by mismatches and process variations. This paper introduces a novel method that compensates the offset of a fully integrated differential CBCM electronic front-end. After a detailed theoretical analysis of the differential CBCM topology, we present and discuss a modified architecture that compensates mismatches and increases robustness against mismatches and process variations. The proposed circuit has been simulated using a standard 130-nm technology and shows a sensitivity of 1.3 mV/aF and a 20× reduction of the standard deviation of the differential output voltage as compared to the traditional solution.


2007 ◽  
Vol 42 (6) ◽  
pp. 1310-1317 ◽  
Author(s):  
Massimo Brandolini ◽  
Marco Sosio ◽  
Francesco Svelto

2011 ◽  
Vol 3 (2) ◽  
pp. 139-145 ◽  
Author(s):  
Srdjan Glisic ◽  
J. Christoph Scheytt ◽  
Yaoming Sun ◽  
Frank Herzel ◽  
Ruoyu Wang ◽  
...  

A fully integrated transmitter (TX) and receiver (RX) front-end chipset, produced in 0.25 µm SiGe:C bipolar and complementary metal oxide semiconductor (BiCMOS) technology, is presented. The front-end is intended for high-speed wireless communication in the unlicensed ISM band of 9 GHz around 60 GHz. The TXand RX features a modified heterodyne topology with a sliding intermediate frequency. The TX features a 12 GHz in-phase and quadrature (I/Q) mixer, an intermediate frequency (IF) amplifier, a phase-locked loop, a 60 GHz mixer, an image-rejection filter, and a power amplifier. The RX features a low-noise amplifier (LNA), a 60 GHz mixer, a phase-locked loop (PLL), and an IF demodulator. The measured 1-dB compression point at the TX output is 12.6 dBm and the saturated power is 16.2 dBm. The LNA has measured noise figure of 6.5 dB at 60 GHz. Error-free data transmission with a 16 quadrature amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM) signal and data rate of 3.6 Gbit/s (without coding 4.8 Gbit/s) over 15 m was demonstrated. This is the best reported result regarding both the data rate and transmission distance in SiGe and CMOS without beamforming.


1998 ◽  
Vol 45 (4) ◽  
pp. 2272-2278 ◽  
Author(s):  
J. Vandenbussche ◽  
F. Leyn ◽  
G. Van der Plas ◽  
G. Gielen ◽  
W. Sansen

2007 ◽  
Vol 6 ◽  
pp. 285-288 ◽  
Author(s):  
Jong-Hoon Lee ◽  
Nobutaka Kidera ◽  
Stephane Pinel ◽  
Joy Laskar ◽  
Manos M. Tentzeris

Sign in / Sign up

Export Citation Format

Share Document