The evaluation of the dynamic performances for high speed A/D converters using mathematical models and simulations

Author(s):  
L. Viman ◽  
S. Lungu ◽  
M. Dabacan ◽  
V. Bande
2006 ◽  
Vol 304-305 ◽  
pp. 492-496 ◽  
Author(s):  
Yu Hou Wu ◽  
L.X. Zhang ◽  
Ke Zhang ◽  
Song Hua Li

As one of the modern manufacture technology, high-speed precision grinding takes an important part in the modern manufacture field. With the development of the technology on high-speed spindle unit, linear precision high-speed feed unit, manufacture of grinding wheel, measurement etc, a great deal of research achievements make it possible for high-speed precision grinding. In this paper, using PMAC (Programmable Multi-Axis Controller)—PC as the central controller, a new kind of high-speed precision grinder is designed and manufactured. The servo control technology of linear motor is investigated. The dynamic performances of the machine are analyzed according to the experimental results. Elliptical workpieces have been machined with this new high-speed precision grinder. Based on these research results, a very helpful approach is provided for the precision grinding of complicated workpieces, and these results promote the development of high speed grinding too.


Author(s):  
A. Y Kuzyshyn ◽  
S. A Kostritsia ◽  
Yu. H Sobolevska ◽  
А. V Batih

Purpose. Taking into account the production and commissioning of modern high-speed rolling stock, the authors are aimed to analyze the currently created mathematical models describing the dynamic behavior of the air spring, systematize them and consider the advantages and disadvantages of each model type. Methodology. For the analysis, a comparative chronological method was used, which makes it possible to trace the development of several points of view, concepts, theories. In accordance with the adopted decision equations, the existing models of air springs were divided into three groups: mechanical, thermodynamic and finite-elements. When analyzing mathematical models, the influence of a number of parameters on the dynamic behavior of the air spring, such as disturbing force frequency, heat transfer, nonlinear characteristics of materials, the shape of the membrane, etc., was considered. Findings. A feature of mechanical models is the determination of input parameters based on the analysis of experimental results, requires access to complex measuring equipment and must be performed for each new model of an air spring separately. Unlike mechanical models, which allow taking into account the damping effect of an air spring in the horizontal and vertical direction, thermodynamic models are mainly focused on studying the dynamic behavior of an air spring in the vertical direction. The use of the finite element method makes it possible to most accurately reproduce the dynamic behavior of an air spring, however, it requires significant expenditures of time and effort to create a finite element model and perform calculations. Originality. Mathematical models of the dynamic behavior of an air spring are systematized, and the importance of their study in conjunction with a spatial mathematical model of high-speed rolling stock is emphasized. Practical value. The analysis of the mathematical models of the dynamic behavior of the air spring shows the ways of their further improvement, indicates the possibility of their use in the spatial mathematical model of the rolling stock in accordance with the tasks set. It will allow, even at the design stage of high-speed rolling stock, to evaluate its dynamic characteristic and traffic safety indicators when interacting with a railway track.


2019 ◽  
Vol 5 (3) ◽  
pp. 36-44
Author(s):  
Viktor A. Bogachev ◽  
Yuri A. Terentyev ◽  
Viktor V. Koledov ◽  
Taras V. Bogachev

Background: Research is ongoing relating to the analysis of a set of issues that arise in connection with the creation of the operating on the basis of vacuum magnetic technologies a transcontinental high-speed land transport corridor, connecting the eastern regions of China with Russia. As part of the variation calculus task, the geopolitical, economic, social, logistic, geographic, geomorphological, seismological, topographic components of the project are considered, in which it is assumed that the high speed overland route will pass through the north-western part of the historical region of Dzungaria. Aim: Find the most optimal from the point of view of the above components the location of the most important section of high speed overland route passing through Central Asia. Methods: Variational methods for solving an optimization problem with the use of a computer math system. Results: After creating a fairly informative and versatile picture of the region in question, the foundations of the corresponding mathematical models are built. Conclusion: The New Dzungarian Gates is a key element in choosing the location of a high-speed overland route based on VMLT.


2021 ◽  
pp. 1051-1058
Author(s):  
Kamolbek Turdibekov ◽  
Mirjalil Yakubov ◽  
Absaid Sulliev ◽  
Amangul Sanbetova

Micromachines ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 716
Author(s):  
Liangliang Li ◽  
Zhufeng Liu ◽  
Chongyu Wang ◽  
Yonghui Xie

Gas-lubricated microbearings are widely applied in multiple fields due to their advantages of high-speed, low friction level and other features. The operating environment of microbearings is complex, and the difference of temperature has an important influence on their comprehensive performance. In this investigation, FEM (finite element method) is employed to investigate the static, dynamic and limit characteristics of microbearings lubricated by different kinds of gas at different temperatures. The results show that the rise of temperature leads to the decline of equivalent viscosity of gas, which weakens the load capacity of microbearings, and furthermore, affects the operating stability of microbearings. The dynamic performances of microbearings at different temperatures are very different, and the two dynamic limit characteristics are more sensitive to temperature when it changes.


2019 ◽  
Vol 136 ◽  
pp. 421-431 ◽  
Author(s):  
Tiancheng Ouyang ◽  
Guicong Huang ◽  
Jingxian Chen ◽  
Binxu Gao ◽  
Nan Chen

Author(s):  
Congcong Zhang ◽  
Yongliang Wang ◽  
Rixiu Men ◽  
Hong He ◽  
Wei Chen

Floating-ring bearings are commonly used in automotive turbocharger applications due to their low cost and their suitability under extreme rotation speeds. This type of bearings, however, can become a source of noise due to oil whirl-induced sub-synchronous vibrations. The scope of this paper is to examine whether the concept of a floating-ring bearing with an elliptical clearance might be a solution to suppress sub-synchronous vibrations. A very time-efficient approximate solution for the Reynolds equation to the geometry of elliptical bearings is presented. The nonlinear dynamic behaviors of a turbocharger rotor supported by two concepts of elliptical floating-ring bearings are systematically investigated using run-up simulations. For the first concept of elliptical floating-ring bearings i.e. the outer bearing of the floating-ring bearing changed in the form of elliptical pattern (see Figure 1(b) in the article), some studies have pointed out that its steady-state and dynamic performances are superior to plain cylindrical floating-ring bearings but, the nonlinear run-up simulation results shown that this type of elliptical floating-ring bearings is not conducive to reduce the self-excited vibration levels. However, for the second type of elliptical floating-ring bearings i.e. both the inner and outer films of the floating-ring bearing changed in the form of elliptical pattern (see Figure 1(c) in the article), it is shown that the sub-synchronous vibrations have been considerably suppressed. Hence, the second noncircular floating-ring bearing design is an attractive measure to suppress self-excited vibrations.[Figure: see text]


Lubricants ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 14
Author(s):  
Benyebka Bou-Saïd ◽  
Mustapha Lahmar ◽  
Ahcène Mouassa ◽  
Bachir Bouchehit

Aerodynamic bearings have received considerable attention in recent decades and are increasingly being used in applications where high speed, low loads and high precision are required. Aerodynamic applications mainly concern auxiliary power units (APU) and air-conditioning machines (ACM). From the industrial point of view, the static and dynamic characteristics of these bearings rotating at very high speed must be determined. According to the literature, studies carried out on this type of bearing consider the elastic deformations of the foils due to the pressure generated in the air film. The linear approach is from time to time adopted for the prediction of the dynamic behavior of these bearings, which is not always justified. This paper aims to present a step towards a better mastery of the non-linear dynamic behavior of a flexible rotor-air bearing system. We will focus on finite element modeling (FEM) of the non-linear isothermal elasto-aerodynamic lubrication problem in the case of a radial bearing operating in a dynamic regime. We will present the effects of rotational speed, unbalance eccentricity, and rotor mass on the non-linear response of rigid and compliant bearings. We use a partitioned approach which treats fluid and structure as two computation domains solved separately; reducing the development time needed for a monolithic code which is difficult to manage when the geometries or the physical properties of the problem to be treated become complex.


Author(s):  
Zexiao Xie ◽  
Peixin Wu ◽  
Ping Ren

A comparative study on the pick-and-place trajectories for high-speed Delta robots is presented in this paper. The Adept Cycle has been widely accepted as a standardized pick-and-place trajectory for industrial robots. The blending curves and optimization methods to smooth this trajectory are briefly surveyed. Three major types of trajectories: Lamé curves, clothoids and piecewise polynomials, are selected as candidates to be compared. The processes to generate these trajectories are briefly reviewed. The trajectories are firstly compared in term of their computation time. Then, based on a dynamic model and an experimental prototype of the Delta robot, different combinations of the geometric paths and motion profiles are compared in terms of power consumption, terminal state accuracy and residual vibration. The effects of trajectory configurations and parameters on the robot’s dynamic performances are investigated. Through a comprehensive analysis on both simulation and experimental results, a near-optimal pick-and-place trajectory for the Delta robot is identified and validated.


Sign in / Sign up

Export Citation Format

Share Document