Adsorption of residual trace impurities in UPW onto wafer surface

Author(s):  
M. Kogure ◽  
T. Yonehara ◽  
T. Sakurai ◽  
T. Ohmi
Author(s):  
Mark Denker ◽  
Jennifer Wall ◽  
Mark Ray ◽  
Richard Linton

Reactive ion beams such as O2+ and Cs+ are used in Secondary Ion Mass Spectrometry (SIMS) to analyze solids for trace impurities. Primary beam properties such as energy, dose, and incidence angle can be systematically varied to optimize depth resolution versus sensitivity tradeoffs for a given SIMS depth profiling application. However, it is generally observed that the sputtering process causes surface roughening, typically represented by nanometer-sized features such as cones, pits, pyramids, and ripples. A roughened surface will degrade the depth resolution of the SIMS data. The purpose of this study is to examine the relationship of the roughness of the surface to the primary ion beam energy, dose, and incidence angle. AFM offers the ability to quantitatively probe this surface roughness. For the initial investigations, the sample chosen was <100> silicon, and the ion beam was O2+.Work to date by other researchers typically employed Scanning Tunneling Microscopy (STM) to probe the surface topography.


1998 ◽  
Author(s):  
Tomasz Brozek ◽  
James Heddleson

Abstract Use of non-contact test techniques to characterize degradation of the Si-SiO2 system on the wafer surface exposed to a plasma environment have proven themselves to be sensitive and useful in investigation of plasma charging level and uniformity. The current paper describes application of the surface charge analyzer and surface photo-voltage tool to explore process-induced charging occurring during plasma enhanced chemical vapor deposition (PECVD) of TEOS oxide. The oxide charge, the interface state density, and dopant deactivation are studied on blanket oxidized wafers with respect to the effect of oxide deposition, power lift step, and subsequent annealing.


Author(s):  
Younan Hua ◽  
Bingsheng Khoo ◽  
Henry Leong ◽  
Yixin Chen ◽  
Eason Chan ◽  
...  

Abstract In wafer fabrication, a silicon nitride (Si3N4) layer is widely used as passivation layer. To qualify the passivation layers, traditionally chemical recipe PAE (H3PO4+ HNO3) is used to conduct passivation pinhole test. However, it is very challenging for us to identify any pinholes in the Si3N4 layer with different layers underneath. For example, in this study, the wafer surface is Si3N4 layer and the underneath layer is silicon substrate. The traditional receipt of PAE cannot be used for passivation qualification. In this paper, we will report a new recipe using KOH solution to identify the pinhole in the Si3N4 passivation layer.


2004 ◽  
Vol 471-472 ◽  
pp. 26-31 ◽  
Author(s):  
Jian Xiu Su ◽  
Dong Ming Guo ◽  
Ren Ke Kang ◽  
Zhu Ji Jin ◽  
X.J. Li ◽  
...  

Chemical mechanical polishing (CMP) has already become a mainstream technology in global planarization of wafer, but the mechanism of nonuniform material removal has not been revealed. In this paper, the calculation of particle movement tracks on wafer surface was conducted by the motion relationship between the wafer and the polishing pad on a large-sized single head CMP machine. Based on the distribution of particle tracks on wafer surface, the model for the within-wafer-nonuniformity (WIWNU) of material removal was put forward. By the calculation and analysis, the relationship between the motion variables of the CMP machine and the WIWNU of material removal on wafer surface had been derived. This model can be used not only for predicting the WIWNU, but also for providing theoretical guide to the design of CMP equipment, selecting the motion variables of CMP and further understanding the material removal mechanism in wafer CMP.


2011 ◽  
Vol 158 (5) ◽  
pp. H487 ◽  
Author(s):  
Hitoshi Habuka ◽  
Shintaro Ohashi ◽  
Taka-Aki Tsuchimochi ◽  
Tetsuo Kinoshita
Keyword(s):  

2019 ◽  
Vol 17 ◽  
pp. 700-706
Author(s):  
N.N. Alias ◽  
K.A. Yaacob ◽  
C.K.Yew

1989 ◽  
Vol 4 (2) ◽  
pp. 394-398 ◽  
Author(s):  
V. S. Kaushik ◽  
A. K. Datye ◽  
D. L. Kendall ◽  
B. Martinez-Tovar ◽  
D. S. Simons ◽  
...  

Implantation of nitrogen at 150 KeV and a dose of 1 ⊠ 1018/cm2 into (110) silicon results in the formation of an amorphized layer at the mean ion range, and a deeper tail of nitrogen ions. Annealing studies show that the amorphized layer recrystallizes into a continuous polycrystalline Si3N4 layer after annealing for 1 h at 1200 °C. In contrast, the deeper nitrogen fraction forms discrete precipitates (located 1μm below the wafer surface) in less than 1 min at this temperature. The arcal density of these precipitates is 5 ⊠ 107/cm2 compared with a nuclei density of 1.6 ⊠ 105/cm2 in the amorphized layer at comparable annealing times. These data suggest that the nucleation step limits the recrystallization rate of amorphous silicon nitride to form continuous buried nitride layers. The nitrogen located within the damaged crystalline silicon lattice precipitates very rapidly, yielding semicoherent crystallites of β–Si3N4.


Sign in / Sign up

Export Citation Format

Share Document