Using the Nonlinear Property of FSR and Dictionary Coding for Reduction of Test Volume

Author(s):  
Il-Soo Lee ◽  
Jae Hoon Jeong ◽  
A.P. Ambler
2016 ◽  
Vol 5 (3) ◽  
pp. 38-43
Author(s):  
Windi Monica Surbakti ◽  
Gerson Rico M.H ◽  
Mersi Suriani Sinaga

Glycerol as a byproduct of biodiesel production was approximately formed 10% of the biodiesel weight. Impurities which contained in the glycerol such as catalyst, soap, methanol, water, salt, and matter organic non glycerol (MONG) have a significant effect on the glycerol concentration. So, it is necessary to treat the impurities. The purpose of this study is to know the effect of chloroform to glycerol purification process with acidification method using hydrochloric acid as pretreatment process. This research was begun with acid addition to the glycerol to neutralize the base content and to split the soap content into free fatty acid and salt, that are more easily separated from glycerol. Then the process was continued with extraction by the solvent chloroform using the variable of test volume ratio (v/v) (1:1, 1:1.5, 1:2)  and the extraction time (20, 40, and 60 minutes). The results showed that the more volume of solvent used, gave less extraction time to produce high purity of glycerol. The highest purity produced in this study amounted to 90,9082% is obtained at the ratio of the volume solvent (v/v) 1:1 with extraction time 60 minutes.


1985 ◽  
Author(s):  
Robert F. Robinson ◽  
Joseph W. Stahl ◽  
M. L. Roberson

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tobias M. Holden ◽  
Reese A. K. Richardson ◽  
Philip Arevalo ◽  
Wayne A. Duffus ◽  
Manuela Runge ◽  
...  

Abstract Background Availability of SARS-CoV-2 testing in the United States (U.S.) has fluctuated through the course of the COVID-19 pandemic, including in the U.S. state of Illinois. Despite substantial ramp-up in test volume, access to SARS-CoV-2 testing remains limited, heterogeneous, and insufficient to control spread. Methods We compared SARS-CoV-2 testing rates across geographic regions, over time, and by demographic characteristics (i.e., age and racial/ethnic groups) in Illinois during March through December 2020. We compared age-matched case fatality ratios and infection fatality ratios through time to estimate the fraction of SARS-CoV-2 infections that have been detected through diagnostic testing. Results By the end of 2020, initial geographic differences in testing rates had closed substantially. Case fatality ratios were higher in non-Hispanic Black and Hispanic/Latino populations in Illinois relative to non-Hispanic White populations, suggesting that tests were insufficient to accurately capture the true burden of COVID-19 disease in the minority populations during the initial epidemic wave. While testing disparities decreased during 2020, Hispanic/Latino populations consistently remained the least tested at 1.87 tests per 1000 population per day compared with 2.58 and 2.87 for non-Hispanic Black and non-Hispanic White populations, respectively, at the end of 2020. Despite a large expansion in testing since the beginning of the first wave of the epidemic, we estimated that over half (50–80%) of all SARS-CoV-2 infections were not detected by diagnostic testing and continued to evade surveillance. Conclusions Systematic methods for identifying relatively under-tested geographic regions and demographic groups may enable policymakers to regularly monitor and evaluate the shifting landscape of diagnostic testing, allowing officials to prioritize allocation of testing resources to reduce disparities in COVID-19 burden and eventually reduce SARS-CoV-2 transmission.


2007 ◽  
Vol 77 (1) ◽  
pp. 25-41 ◽  
Author(s):  
Michael Shayer ◽  
Denise Ginsburg ◽  
Robert Coe
Keyword(s):  

1972 ◽  
Vol 28 (5) ◽  
pp. 527-528 ◽  
Author(s):  
Th. Kenner ◽  
K. Ono ◽  
J. Rubenstein

2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Yu-Hua Zhang ◽  
Xin-Xin Li ◽  
Xiang-Hong Wang ◽  
Zhen-Feng Huang ◽  
Han-Ling Mao ◽  
...  

Residual stress has significant influence on the performance of mechanical components, and the nondestructive estimation of residual stress is always a difficult problem. This study applies the relative nonlinear coefficient of critical refraction longitudinal (LCR) wave to nondestructively characterize the stress state of materials; the feasibility of residual stress estimation using the nonlinear property of LCR wave is verified. The nonlinear ultrasonic measurements based on LCR wave are conducted on components with known stress state to calculate the relative nonlinear coefficient. Experimental results indicate that the relative nonlinear coefficient monotonically increases with prestress and the increment of relative nonlinear coefficient is about 80%, while the wave velocity only decreases about 0.2%. The sensitivity of the relative nonlinear coefficient for stress is much higher than wave velocity. Furthermore, the dependence between the relative nonlinear coefficient and deformation state of components is found. The stress detection resolution based on the nonlinear property of LCR wave is 10 MPa, which has higher resolution than wave velocity. These results demonstrate that the nonlinear property of LCR wave is more suitable for stress characterization than wave velocity, and this quantitative information could be used for residual stress estimation.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 6536-6536
Author(s):  
Dave Smart ◽  
Peter Riccelli ◽  
Keith Kerr ◽  
Jordan Clark ◽  
Susanne Munksted Fosvig ◽  
...  

6536 Background: The COVID-19 pandemic has caused >400,000 infection related deaths in the US to January 2021. Actions taken to limit COVID-19 infection and mortality could potentially lead to unintended consequences, precipitating excess mortality due to other causes. One such cause is delayed cancer diagnosis. Significant decreases in presentation for cancer diagnosis at the primary care level have been noted in the UK. This study aimed to look for evidence of a similar effect in the US. Methods: CMS claims data from JAN18-JUN20 associated with primary diagnosis across 11 cancers (bladder, breast, cervical, colorectal, endometrial, lung, ovarian, pancreatic, prostate, sarcoma and thyroid) were analyzed for use of surgical pathology (SP), a procedure associated with initial diagnosis, and immunohistochemistry (IHC). Test volumes varied widely by test and cancer so were normalized to enable comparison across indications. This was done by dividing the month-on-month difference for the period JAN19-JUN19 vs JAN20-JUN20 by the median monthly test volume for the period JAN18-DEC19 (“pre-COVID period”). Extent and duration of declines in test rates and number of missing patients as the sum of these declines were then determined. The ratio of IHC to SP testing was taken to determine any decline in likely post-initial diagnosis testing. Results: There were significant (>10%) declines in test volumes for SP for all 11 cancers at some time in Q1-Q2 2020. Table. Extent, duration and return to pre-COVID levels for SP testing across 11 cancers Median extent and duration of the decline was 56% (range 41.1%-80.4%) and 2 months (range 1- >4). This equates to 32,192 missing diagnoses across all cancers. SP test volumes for all cancers except lung and breast had returned to around pre-COVID levels by JUN20. There was no significant (>10%) increase in normalized SP test volume after the COVID dip for any cancer. While SP showed decreased test volumes across all cancers at some point during the first half of 2020, test volume ratios of IHC to SP showed increases for most cancers in the same time period. Conclusions: These data highlight that the decline in patients presenting to their primary care physicians with suspicion of cancer for diagnostic investigation was linked to COVID-19 prevention strategies. No evidence for increased, “catch up” testing to address presentational/diagnostic backlog was observed. Thus, it is predicted that these patients may subsequently present with a more advanced cancer. Potential excess morbidity, mortality and cost associated with absent or delayed diagnosis should be factored into cancer control programs going forward.[Table: see text]


2021 ◽  
Author(s):  
Julia Wukovits ◽  
Nicolaas Glock ◽  
Johanna Nachbagauer ◽  
Petra Heinz ◽  
Wolfgang Wanek ◽  
...  

<p>Benthic foraminifera are highly abundant, ubiquitous marine protists, with many species feeding on microalgae or phytodetritus. Knowledge about carbon and nitrogen budgets and metabolic activities of benthic foraminifera can help to increase our understanding about their ecology and their role in aquatic biogeochemistry at the sediment-water interface. This can further increase their application as proxies for environmental changes. Shifts in the benthic foraminiferal communities of the Swedish Gullmars Fjord document the shift from well oxygenated bottom waters to seasonal hypoxia at its deepest location the Alsbäck Deep (125 m), during the last century.</p><p>So far there are only investigations available relating foraminiferal community composition with increased primary productivity and resulting hypoxia in this Fjord. In contrast, studies about the species-specific feeding ecology or food derived foraminiferal carbon and nitrogen fluxes are scarce.</p><p>Therefore, laboratory feeding experiments and respiration rate measurements were carried out with <em>Bulimina marginata</em>, <em>Cassidulina laevigata</em> and <em>Globobulima turgida</em>, abundant foraminifera in such environments, collected in August 2017.</p><p>Experiments were conducted to evaluate the carbon and nitrogen intake and turnover of dual (<sup>13</sup>C and <sup>15</sup>N) isotope labelled <em>Phaeodactylum tricornutum</em> detritus; detritus of a common diatom in the Gullmar Fjord. For the feeding experiments, foraminifera were incubated at 9.1°C in the dark, in sterile filtered seawater at ambient oxygen concentrations. The foraminifera were fed for a period of 24 hours and subsequently incubated without food for another 24 hours. After each incubation cycle, foraminiferal respiration rates were measured. The individuals were analyzed via Elemental Analyzer-Isotope Ratio Mass Spectroscopy to evaluate <sup>13</sup>C/<sup>12</sup>C and <sup>15</sup>N/<sup>14</sup>N ratios and their bulk content of organic carbon and nitrogen.</p><p>Additionally, we present carbon and nitrogen to volume ratios for the foraminifera <em>B. marginata</em>, <em>C. laevigata</em>, <em>G. turgida</em>, <em>G. auriculata</em> and <em>Nonionella turgida</em>, as derived from elemental analysis and light microscopy imaging.</p><p>The results show, that <em>B. marginata</em>, an opportunistic species associated with high fluxes of organic matter, had the highest rate of specific carbon and nitrogen intake and turnover. <em>Cassidulina laevigata</em>, a species that co-occurs with fresh phytodetritus and does not tolerate very low oxygen concentrations, showed lower carbon and nitrogen intake rates. <em>Globobulima turgida</em>, a denitrifying infaunal species that thrives under hypoxia, showed the lowest specific carbon and nitrogen intake and turnover rates. Respiration rates of all species did not depend on incubation with or without a food source. The foraminifera showed similar carbon and nitrogen densities per test volume across all species.</p><p>Overall this study helps to improve the knowledge on the nutritional ecology of the investigated species, demonstrating the close relation between feeding/metabolic rates and their environmental niche and highlighting the need to introduce foraminiferal data in future marine carbon and nitrogen flux models.</p>


2018 ◽  
Vol 48 (3) ◽  
pp. 241-245 ◽  
Author(s):  
Anieke Brombacher ◽  
Leanne E. Elder ◽  
Pincelli M. Hull ◽  
Paul A. Wilson ◽  
Thomas H. G. Ezard

Abstract Body size is one of the most commonly measured traits in ecology and evolution because it covaries with environmental (e.g., temperature, latitude, degree of population isolation) and life-history (e.g., metabolic rate, generation time) traits. However, the driving mechanisms of body size variation in the distant geological past are poorly known and complicated by partial specimen recovery, limited population-level sampling, and the use of linear measurements as proxies for three-dimensional volumetric-size data. How much information are we missing by using approximate metrics of body size? Here we examine this question in an evolving lineage of planktonic foraminifera. We measure test diameter and surface area of over 500 individuals of the species Globoconella puncticulata using two-dimensional images. These results are compared with measurements of test volume of the same individuals as measured by a recently developed high-throughput method for analysing three-dimensional morphometrics as well as high-resolution three-dimensional computed tomography scanning. Our results show that even in a lineage showing substantial morphological change, a cross-sectional test area can provide a consistent proxy for body volume. Approximating body volume with one-dimensional (linear) size measurements is more problematic as it systematically over- and underestimates the smallest and largest tests, respectively. In our study, shape (here measured as shell-aspect ratio) only explained marginally more variation when included in the regressions. The use of 3D light microscopy introduces a small degree of scatter in the data, but the number of individuals necessary to detect trends in body size with sufficient statistical power is comparable to the sample size required for other traits. These results imply that even in an evolving lineage undergoing substantial morphological change, cross-sectional area can provide a consistent proxy for body size.


Sign in / Sign up

Export Citation Format

Share Document