Calibration of Test Diameter and Area As Proxies For Body Size in the Planktonic Foraminifer Globoconella Puncticulata

2018 ◽  
Vol 48 (3) ◽  
pp. 241-245 ◽  
Author(s):  
Anieke Brombacher ◽  
Leanne E. Elder ◽  
Pincelli M. Hull ◽  
Paul A. Wilson ◽  
Thomas H. G. Ezard

Abstract Body size is one of the most commonly measured traits in ecology and evolution because it covaries with environmental (e.g., temperature, latitude, degree of population isolation) and life-history (e.g., metabolic rate, generation time) traits. However, the driving mechanisms of body size variation in the distant geological past are poorly known and complicated by partial specimen recovery, limited population-level sampling, and the use of linear measurements as proxies for three-dimensional volumetric-size data. How much information are we missing by using approximate metrics of body size? Here we examine this question in an evolving lineage of planktonic foraminifera. We measure test diameter and surface area of over 500 individuals of the species Globoconella puncticulata using two-dimensional images. These results are compared with measurements of test volume of the same individuals as measured by a recently developed high-throughput method for analysing three-dimensional morphometrics as well as high-resolution three-dimensional computed tomography scanning. Our results show that even in a lineage showing substantial morphological change, a cross-sectional test area can provide a consistent proxy for body volume. Approximating body volume with one-dimensional (linear) size measurements is more problematic as it systematically over- and underestimates the smallest and largest tests, respectively. In our study, shape (here measured as shell-aspect ratio) only explained marginally more variation when included in the regressions. The use of 3D light microscopy introduces a small degree of scatter in the data, but the number of individuals necessary to detect trends in body size with sufficient statistical power is comparable to the sample size required for other traits. These results imply that even in an evolving lineage undergoing substantial morphological change, cross-sectional area can provide a consistent proxy for body size.

2008 ◽  
Vol 78 (5) ◽  
pp. 832-837 ◽  
Author(s):  
Hiroyuki Nawa ◽  
Snehlata Oberoi ◽  
Karin Vargervik

Abstract Objective: To report the occurrence of taurodontism in a clinical sample of Van der Woude syndrome (VWS) and describe its association with hypodontia and cleft type. Materials and Methods: This retrospective, cross-sectional study was carried out on chart reviews and radiographs of 13 persons with VWS. Mean age was 10 years 11 months ± 1 year 5 months. Panoramic radiographs were used to confirm the presence or absence of teeth and to measure crown body and root lengths of mandibular first molars. Three-dimensional cone beam computed tomography (CT) scans were available on two persons with VWS. Both volumetric and linear measurements were obtained. Results: The occurrence of taurodontism of the mandibular first molar was 35%: 27% hypodont and 8% mesodont. Of the 13 subjects with VWS, 6 (4 males and 2 females) had at least one tooth identified with taurodontism. Half of the cases were unilateral and half were bilateral, and all of the unilateral cases were on the left side. Five of the six subjects with taurodontism had missing incisors and premolars. Taurodontism was two times more frequent in those who were missing their second premolars than in those who had their second premolars. There was no correlation between cleft type and presence of taurodontism. The cone beam CT pilot study on two persons showed very abnormal morphology of both crown and roots, which was not apparent on the standard panoramic radiograph. Both the volumetric and linear measurements of the ratio of crown body to root were highly indicative of taurodontism. Further genetic studies are needed. Conclusion: There is a likely association between VWS and taurodontism.


Open Heart ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. e001050 ◽  
Author(s):  
Asbjørn Støylen ◽  
Harald Edvard Mølmen ◽  
Håvard Dalen

BackgroundStrain is a relative deformation and has three dimensions, in the left ventricle (LV) usually longitudinal (εL), transmural (εT) and circumferential (εC) strain. All three components can be measured generically by the basic systolic and diastolic dimension measures of LV wall length, wall thickness and diameter. In this observational study we aimed to study the relations of normal generic strains to age, body size and gender, as well as the interrelations between the three strain components.MethodsGeneric strains derived from dimension measures by longitudinal and cross-sectional M-mode in all three dimensions were measured in 1266 individuals without heart disease from the Nord-Trøndelag Health Study.ResultsThe mean εL was −16.3%, εC was −22.7% and εT was 56.5%. Normal values by age and gender are provided. There was a gradient of εC from the endocardial, via the midwall to the external level, lowest at the external. All strains decreased in absolute values by increasing body surface area (BSA) and age, relations were strongest for εL. Gender differences were mainly a function of BSA differences. The three strain components were strongly interrelated through myocardial incompressibility.ConclusionsGlobal systolic strain is the total deformation of the myocardium; the three strain components are the spatial coordinates of this deformation, irrespective of the technology used for measurement. Normal values are method-dependent and not normative across methods. Interrelation of strains indicates a high degree of myocardial incompressibility and that longitudinal strain carries most of the total information.


2022 ◽  
pp. 174702182210768
Author(s):  
Georgia Turnbull ◽  
Joanna Alexi ◽  
Georgina Mann ◽  
Yanqi Li ◽  
Manja Engel ◽  
...  

Research has shown that body size judgements are frequently biased, or inaccurate. Critically, judgement biases are further exaggerated for individuals with eating disorders, a finding that has been attributed to difficulties integrating body features into a perceptual whole. However, current understanding of which body features are integrated when judging body size is lacking. In this study, we examine whether individuals integrate three-dimensional (3D) cues to body volume when making body size judgements. Computer-generated body stimuli were presented in a 3D Virtual Reality (VR) environment. Participants (N = 412) were randomly assigned to one of two conditions: in one condition the to-be-judged body was displayed binocularly (containing 3D cues to body volume), in the other, bodies were presented monocularly (2D cues only). Across 150 trials, participants were required to make a body size judgement of a target female body from a third-person point of view using an unmarked visual analogue scale (VAS). It was found that 3D cues significantly influenced body size judgements. Namely, thin 3D bodies were judged smaller, and overweight 3D bodies were judged larger, than their 2D counterpart. Furthermore, to reconcile these effects, we present evidence that the two perceptual biases, regression to the mean and serial dependence, were reduced by the additional 3D feature information. Our findings increase our understanding of how body size is perceptually encoded and creates testable predictions for clinical populations exhibiting integration difficulties.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 757
Author(s):  
Maged Sultan Alhammadi ◽  
Abeer Abdulkareem Al-mashraqi ◽  
Rayid Hussain Alnami ◽  
Nawaf Mohammad Ashqar ◽  
Omar Hassan Alamir ◽  
...  

The study sought to assess whether the soft tissue facial profile measurements of direct Cone Beam Computed Tomography (CBCT) and wrapped CBCT images of non-standardized facial photographs are accurate compared to the standardized digital photographs. In this cross-sectional study, 60 patients with an age range of 18–30 years, who were indicated for CBCT, were enrolled. Two facial photographs were taken per patient: standardized and random (non-standardized). The non-standardized ones were wrapped with the CBCT images. The most used soft tissue facial profile landmarks/parameters (linear and angular) were measured on direct soft tissue three-dimensional (3D) images and on the photographs wrapped over the 3D-CBCT images, and then compared to the standardized photographs. The reliability analysis was performed using concordance correlation coefficients (CCC) and depicted graphically using Bland–Altman plots. Most of the linear and angular measurements showed high reliability (0.91 to 0.998). Nevertheless, four soft tissue measurements were unreliable; namely, posterior gonial angle (0.085 and 0.11 for wrapped and direct CBCT soft tissue, respectively), mandibular plane angle (0.006 and 0.0016 for wrapped and direct CBCT soft tissue, respectively), posterior facial height (0.63 and 0.62 for wrapped and direct CBCT soft tissue, respectively) and total soft tissue facial convexity (0.52 for both wrapped and direct CBCT soft tissue, respectively). The soft tissue facial profile measurements from either the direct 3D-CBCT images or the wrapped CBCT images of non-standardized frontal photographs were accurate, and can be used to analyze most of the soft tissue facial profile measurements.


2021 ◽  
Vol 11 (8) ◽  
pp. 3404
Author(s):  
Majid Hejazian ◽  
Eugeniu Balaur ◽  
Brian Abbey

Microfluidic devices which integrate both rapid mixing and liquid jetting for sample delivery are an emerging solution for studying molecular dynamics via X-ray diffraction. Here we use finite element modelling to investigate the efficiency and time-resolution achievable using microfluidic mixers within the parameter range required for producing stable liquid jets. Three-dimensional simulations, validated by experimental data, are used to determine the velocity and concentration distribution within these devices. The results show that by adopting a serpentine geometry, it is possible to induce chaotic mixing, which effectively reduces the time required to achieve a homogeneous mixture for sample delivery. Further, we investigate the effect of flow rate and the mixer microchannel size on the mixing efficiency and minimum time required for complete mixing of the two solutions whilst maintaining a stable jet. In general, we find that the smaller the cross-sectional area of the mixer microchannel, the shorter the time needed to achieve homogeneous mixing for a given flow rate. The results of these simulations will form the basis for optimised designs enabling the study of molecular dynamics occurring on millisecond timescales using integrated mix-and-inject microfluidic devices.


Author(s):  
Surabhi Rathore ◽  
Tomoki Uda ◽  
Viet Q. H. Huynh ◽  
Hiroshi Suito ◽  
Toshitaka Watanabe ◽  
...  

AbstractHemodialysis procedure is usually advisable for end-stage renal disease patients. This study is aimed at computational investigation of hemodynamical characteristics in three-dimensional arteriovenous shunt for hemodialysis, for which computed tomography scanning and phase-contrast magnetic resonance imaging are used. Several hemodynamical characteristics are presented and discussed depending on the patient-specific morphology and flow conditions including regurgitating flow from the distal artery caused by the construction of the arteriovenous shunt. A simple backflow prevention technique at an outflow boundary is presented, with stabilized finite element approaches for incompressible Navier–Stokes equations.


Primates ◽  
2021 ◽  
Author(s):  
Madeleine Geiger

AbstractHuman impact influences morphological variation in animals, as documented in many captive and domestic animal populations. However, there are different levels of human impact, and their influence on the pattern and rate of morphological variation remains unclear. This study contributes to the ongoing debate via the examination of cranial and mandibular shape and size variation and pace of change in Japanese macaques (Macaca fuscata). This species is ideal for tackling such questions because different wild, wild-provisioned, and captive populations have been monitored and collected over seven decades. Linear measurements were taken on 70 skulls from five populations, grouped into three ‘human impact groups’ (wild, wild-provisioned, and captive). This made it possible to investigate the pattern and pace of skull form changes among the human impact groups as well as over time within the populations. It was found that the overall skull shape tends to differ among the human impact groups, with captive macaques having relatively longer rostra than wild ones. Whether these differences are a result of geographic variation or variable human impact, related to nutritional supply and mechanical properties of the diet, is unclear. However, this pattern of directed changes did not seem to hold when the single captive populations were examined in detail. Although environmental conditions have probably been similar for the two examined captive populations (same captive locality), skull shape changes over the first generations in captivity were mostly different. This varying pattern, together with a consistent decrease in body size in the captive populations over generations, points to genetic drift playing a role in shaping skull shape and body size in captivity. In the captive groups investigated here, the rates of change were found to be high compared to literature records from settings featuring different degrees of human impact in different species, although they still lie in the range of field studies in a natural context. This adds to the view that human impact might not necessarily lead to particularly fast rates of change.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhe Li ◽  
Guanzhi Liu ◽  
Run Tian ◽  
Ning Kong ◽  
Yue Li ◽  
...  

Abstract Background Our objective was to obtain normal patellofemoral measurements to analyse sex and individual differences. In addition, the absolute values and indices of tibial tuberosity-trochlear groove (TT-TG) distances are still controversial in clinical application. A better method to enable precise prediction is still needed. Methods Seventy-eight knees of 78 participants without knee pathologies were included in this cross-sectional study. A CT scan was conducted for all participants and three-dimensional knee models were constructed using Mimics and SolidWorks software. We measured and analysed 19 parameters including the TT-TG distance and dimensions and shapes of the patella, femur, tibia, and trochlea. LASSO regression was used to predict the normal TT-TG distances. Results The dimensional parameters, TT-TG distance, and femoral aspect ratio of the men were significantly larger than those of women (all p values < 0.05). However, after controlling for the bias from age, height, and weight, there were no significant differences in TT-TG distances and anterior-posterior dimensions between the sexes (all p values > 0.05). The Pearson correlation coefficients between the anterior femoral offset and other indexes were consistently below 0.3, indicating no relationship or a weak relationship. Similar results were observed for the sulcus angle and the Wiberg index. Using LASSO regression, we obtained four parameters to predict the TT-TG distance (R2 = 0.5612, p < 0.01) to achieve the optimal accuracy and convenience. Conclusions Normative data of patellofemoral morphology were provided for the Chinese population. The anterior-posterior dimensions of the women were thicker than those of men for the same medial-lateral dimensions. More attention should be paid to not only sex differences but also individual differences, especially the anterior condyle and trochlea. In addition, this study provided a new method to predict TT-TG distances accurately.


Sign in / Sign up

Export Citation Format

Share Document