Behavior of Interconnect-Failed PV Modules Under Standard Test Conditions and Actual Operation Conditions

2018 ◽  
Vol 8 (6) ◽  
pp. 1761-1766 ◽  
Author(s):  
Takumi Takashima
2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Vandana Jha ◽  
Uday Shankar Triar

This paper proposes an improved generalized method for evaluation of parameters, modeling, and simulation of photovoltaic modules. A new concept “Level of Improvement” has been proposed for evaluating unknown parameters of the nonlinear I-V equation of the single-diode model of PV module at any environmental condition, taking the manufacturer-specified data at Standard Test Conditions as inputs. The main contribution of the new concept is the improvement in the accuracy of values of evaluated parameters up to various levels and is based on mathematical equations of PV modules. The proposed evaluating method is implemented by MATLAB programming and, for demonstration, by using the values of parameters of the I-V equation obtained from programming results, a PV module model is build with MATLAB. The parameters evaluated by the proposed technique are validated with the datasheet values of six different commercially available PV modules (thin film, monocrystalline, and polycrystalline) at Standard Test Conditions and Nominal Operating Cell Temperature Conditions. The module output characteristics generated by the proposed method are validated with experimental data of FS-270 PV module. The effects of variation of ideality factor and resistances on output characteristics are also studied. The superiority of the proposed technique is proved.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Ankita Gaur ◽  
G. N. Tiwari

In this paper, an attempt of performance evaluation of semitransparent and opaque photovoltaic (PV) modules of different generation solar cells, having the maximum efficiencies reported in the literature at standard test conditions (STC), has been carried out particularly for the months of January and June. The outdoor performance is also evaluated for the commercially available semitransparent and opaque PV modules. Annual electrical energy, capitalized cost, annualized uniform cost (unacost), and cost per unit electrical energy for both types of solar modules, namely, semitransparent and opaque have also been computed along with their characteristics curves. Semitransparent PV modules have shown higher efficiencies compared to the opaque ones. Calculations show that for the PV modules made in laboratory, CdTe exhibits the maximum annual electrical energy generation resulting into minimum cost per unit electrical energy, whereas a-Si/nc-Si possesses the maximum annual electrical energy generation giving minimum cost per unit electrical energy when commercially available solar modules are concerned. CIGS has shown the lowest capitalized cost over all other PV technologies.


2011 ◽  
Vol 368-373 ◽  
pp. 2425-2429 ◽  
Author(s):  
Shi Zhu Lin ◽  
Hui Min Li ◽  
Hong Yan Zhang

The existing concrete structures, especially hydraulic dams, in the cold areas of northern China have suffered from freeze-thaw damages to varying degrees in the small part or the vast areas of the projects. This paper will work out the performance deterioration index with the relative dynamic elastic modulus and the mass loss rate of the concrete. The test shows that there is a linear relationship between the concrete's relative dynamic elastic modulus and the increasing number of freezing-thawing cycles; the mass loss rate, however, varies with the water-cement ratio and displays different tendency of changes in the initial phase of the cycle, but the mass is decreased in the later phase. Besides, combining with the application, the writer will simulate the concrete's freezing-thawing process under actual operation conditions with the standard test data, in order to offer the presumption model of freezing-thawing durability and predict the residual freezing-thawing life of the concrete, thus providing theoretical basis for the structure's maintenance, repair, and dismantlement.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Wonwook Oh ◽  
Seongtak Kim ◽  
Soohyun Bae ◽  
Nochang Park ◽  
Sung-Il Chan ◽  
...  

We investigated the migration of Sn and Pb onto the Ag fingers of crystalline Si solar cells in photovoltaic modules aged in field for 6 years. Layers of Sn and Pb were found on the Ag fingers down to the edge of the solar cells. This phenomenon is not observed in a standard acceleration test condition for PV modules. In contrast to the acceleration test conditions, field aging subjects the PV modules to solar irradiation and moisture condensation at the interface between the solar cells and the encapsulant. The solder ribbon releases Sn and Pb via repeated galvanic corrosion and the Sn and Pb precipitate on Ag fingers due to the light-induced plating under solar irradiation.


2018 ◽  
Vol 3 (4) ◽  
pp. 190-200
Author(s):  
B. Benabdelkrim ◽  
A. Benatillah

The study of photovoltaic systems (PV) in an efficient manner requires a precise knowledge of the I-V characteristic curves of PV modules. An accurate current-voltage (I-V) model of PV modules is inherently implicit and non-linear and calls for iterative computations to obtain an analytical expression of current as a function of voltage. In this paper, numerical approaches are proposed to forecast the PV modules performance for engineering applications. The proposed approaches were implemented in a Matlab script and the results have been compared with the datasheet values provided by manufacturers in standard test conditions (STC). These approaches permit to extract the unknown parameters and also allow quantifying the effects of module temperature and irradiance on key cells parameters. In this work, a comparative study of the performance characteristics for different modules thin films and solid is analyzed by a single-diode equivalent circuit using four- and five-parameter models and two diode model.


2019 ◽  
Vol 9 ◽  
pp. 59-69
Author(s):  
Alok Dhaundiyal ◽  
Divine Atsu

This paper presents the modeling and simulation of the characteristics and electrical performance of photovoltaic (PV) solar modules. Genetic coding is applied to obtain the optimized values of parameters within the constraint limit using the software MATLAB. A single diode model is proposed, considering the series and shunt resistances, to study the impact of solar irradiance and temperature on the power-voltage (P-V) and current-voltage (I-V) characteristics and predict the output of solar PV modules. The validation of the model under the standard test conditions (STC) and different values of temperature and insolation is performed, as well as an evaluation using experimentally obtained data from outdoor operating PV modules. The obtained results are also subjected to comply with the manufacturer’s data to ensure that the proposed model does not violate the prescribed tolerance range. The range of variation in current and voltage lies in the domain of 8.21 – 8.5 A and 22 – 23 V, respectively; while the predicted solutions for current and voltage vary from 8.28 – 8.68 A and 23.79 – 24.44 V, respectively. The measured experimental power of the PV module estimated to be 148 – 152 W is predicted from the mathematical model and the obtained values of simulated solution are in the domain of 149 – 157 W. The proposed scheme was found to be very effective at determining the influence of input factors on the modules, which is difficult to determine through experimental means.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4825 ◽  
Author(s):  
Nader Anani ◽  
Haider Ibrahim

This paper presents a succinct exploration of several analytical methods for extracting the parameters of the single-diode model (SDM) of a photovoltaic (PV) module under standard test conditions (STC). The paper investigates six methods and presents the detailed mathematical analysis leading to the development of each method. To evaluate the performance of these methods, MATLAB-based software has been devised and deployed to generate the results of each method when used to extract the SDM parameters of various PV test modules of different PV technologies. Similar software has also been developed to extract the same parameters using well-established numerical and iterative techniques. A comparison is subsequently made between the synthesized results and those obtained using numerical and iterative methods. The comparison indicates that although analytical methods may involve a significant amount of approximations, their accuracy can be comparable to that of their numerical and iterative counterparts, with the added advantage of a significant reduction in computational complexity, and without the initialization and convergence difficulties, which are normally associated with numerical methods.


Sign in / Sign up

Export Citation Format

Share Document