scholarly journals Silicon Carbide Integrated Circuits With Stable Operation Over a Wide Temperature Range

2014 ◽  
Vol 35 (12) ◽  
pp. 1206-1208 ◽  
Author(s):  
Reza Ghandi ◽  
Cheng-Po Chen ◽  
Liang Yin ◽  
Xingguang Zhu ◽  
Liangchun Yu ◽  
...  
2014 ◽  
Vol 1693 ◽  
Author(s):  
David T. Clark ◽  
Robin F. Thompson ◽  
Aled E. Murphy ◽  
David A. Smith ◽  
Ewan P. Ramsay ◽  
...  

ABSTRACTWe present the characteristics of a high temperature CMOS integrated circuit process based on 4H silicon carbide designed to operate at temperatures beyond 300°C. N-channel and P-channel transistor characteristics at room and elevated temperatures are presented. Both channel types show the expected low values of field effect mobility well known in SiC MOSFETS. However the performance achieved is easily capable of exploitation in CMOS digital logic circuits and certain analogue circuits, over a wide temperature range.Data is also presented for the performance of digital logic demonstrator circuits, in particular a 4 to 1 analogue multiplexer and a configurable timer operating over a wide temperature range. Devices are packaged in high temperature ceramic dual in line (DIL) packages, which are capable of greater than 300°C operation. A high temperature “micro-oven” system has been designed and built to enable testing and stressing of units assembled in these package types. This system heats a group of devices together to temperatures of up to 300°C while keeping the electrical connections at much lower temperatures. In addition, long term reliability data for some structures such as contact chains to n-type and p-type SiC and simple logic circuits is summarized.


2013 ◽  
Vol 2013 (HITEN) ◽  
pp. 000069-000074
Author(s):  
Khalil El Falahi ◽  
Stanislas Hascoët ◽  
Cyril Buttay ◽  
Pascal Bevilacqua ◽  
Luong-Viet Phung ◽  
...  

More electric aircraft require converters that can operate over a wide temperature range (−55 to more than 200°C). Silicon carbide JFETs can satisfy these requirements, but there is a need for suitable peripheral components (gate drivers, passives. . . ). In this paper, we present a “smart power module” based on SiC JFETs and dedicated integrated gate driver circuits. The design is detailed, and some electrical results are given, showing proper operation of the module up to 200°C.


2010 ◽  
Vol 645-648 ◽  
pp. 1135-1138 ◽  
Author(s):  
Philip G. Neudeck ◽  
Michael J. Krasowski ◽  
Liang Yu Chen ◽  
Norman F. Prokop

The NASA Glenn Research Center has previously reported prolonged stable operation of simple prototype 6H-SiC JFET integrated circuits (logic gates and amplifier stages) for thousands of hours at +500 °C. This paper experimentally investigates the ability of these 6H-SiC JFET devices and integrated circuits to also function at cold temperatures expected to arise in some envisioned applications. Prototype logic gate ICs experimentally demonstrated good functionality down to -125 °C without changing circuit input voltages. Cascaded operation of gates at cold temperatures was verified by externally wiring gates together to form a 3-stage ring oscillator. While logic gate output voltages exhibited little change across the broad temperature range from -125 °C to +500 °C, the change in operating frequency and power consumption of these non-optimized logic gates as a function of temperature was much larger and tracked JFET channel conduction properties.


2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000072-000075 ◽  
Author(s):  
Cheng-Po Chen ◽  
Reza Ghandi ◽  
Liang Yin ◽  
Xingguang Zhu ◽  
Liangchun Yu ◽  
...  

In this work silicon carbide MOSFET based integrated circuits such as operational amplifier. 27-stage ring oscillator and CMOS-based inverter have been designed, fabricated and successfully tested at high temperatures. Silicon carbide MOSFETs remained fully operational from room temperature to 500°C with stable I-V characteristics. Also 27-stage ring oscillator, operational amplifier and CMOS inverter tested and shown to be functional up to 500°C, with relatively small performance change between 300°C and 500°C. High temperature reliability evaluation of these circuits demonstrate stable operation and both the ring oscillator and OpAmp survived more than 100 hours at 500°C.


1987 ◽  
Vol 134 (5) ◽  
pp. 291 ◽  
Author(s):  
K.T.V. Grattan ◽  
J.D. Manwell ◽  
S.M.L. Sim ◽  
C.A. Willson

Author(s):  
Akila C. Thenuwara ◽  
Pralav P. Shetty ◽  
Neha Kondekar ◽  
Chuanlong Wang ◽  
Weiyang Li ◽  
...  

A new dual-salt liquid electrolyte is developed that enables the reversible operation of high-energy sodium-metal-based batteries over a wide range of temperatures down to −50 °C.


Sign in / Sign up

Export Citation Format

Share Document