The running characteristics of a screw-principle microrobot in a small bent pipe

Author(s):  
I. Hayashi ◽  
N. Iwatsuki ◽  
S. Iwashina
Keyword(s):  
Author(s):  
A. Tomiguchi ◽  
Y. Sochi ◽  
Y. Matsubara

Abstract This study focuses on two major advantages of induction heating over flame heating in the treatment of coated boiler tubes. In both cases the induction heating process is simple, fast and effective. Firstly, we will show how the the use of induction heating results in exceptionally thick and hard coatings with low porosity. Having high corrosion and wear resistant properties, the products can satisfy industry's needs for reliable coatings with a long service life. Next, the study will detail how a pipe with the coating already applied can be simultaneously bent by induction heating while the coating is melted and fused to the pipe. The result is a thicker, more even and reliable coating than that accomplished by the flame sprayed method on a bent pipe. The process is not only less cumbersome, but again provides a superior product for the market.


Author(s):  
Hitoshi Asahi ◽  
Eiji Tsuru

Application of strain based design to pipelines in arctic or seismic areas has recently been recognized as important. So far, there has been much study performed on tensile strain limit and compressive strain limit. However, the relationship between bending buckling (compressive strain limit) and tensile strain limit has not been discussed. A model using actual stress strain curves suggests that the tensile strain limit increases as Y/T rises under uniaxial tensile stress because a pipe manufacturer usually raises TS instead of lowering YS to achieve low Y/T. Under bending of a pipe with a high D/t, an increase in compressive strain on intrados of a bent pipe at the maximum bending moment (ε-cp*) improves the tensile strain limit because the tensile strain limit is controlled by the onset of buckling or ε-cp* which is increased by lowering Y/T. On the other hand, under bending of a pipe with a low D/t, the tensile strain limit may not be influenced by improvement of buckling behavior because tensile strain on the extrados is already larger than the tensile limit at ε-cp*. Finally, we argue that the balance of major linepipe properties is important. Efforts other than the strict demands for pipe properties are also very important and inevitable to improve the strain capacity of a pipeline.


Author(s):  
Ce Yang ◽  
Ben Zhao ◽  
C. C. Ma ◽  
Dazhong Lao ◽  
Mi Zhou

Two different inlet configurations, including a straight pipe and a bent pipe, were experimentally tested and numerically simulated using a high-speed, low-mass flow centrifugal compressor. The pressure ratios of the compressor with the two inlet configurations were tested and then compared to illustrate the effect of the bent inlet pipe on the compressor. Furthermore, different circumferential positions of the bent inlet pipe relative to the volute are discussed for two purposes. One purpose is to describe the changes in the compressor performance that result from altering the circumferential position of the bent inlet pipe relative to the volute. This change in performance may be the so-called clocking effect, and its mechanism is different from the one in multistage turbomachinery. The other purpose is to investigate the unsteady flow for different matching states of the bent inlet pipe and volute. Thus, the frequency spectrum of unsteady pressure fluctuation was applied to analyze the aerodynamic response. Compared with the straight inlet pipe, the experimental results show that the pressure ratio is modulated and that the choke point is shifted in the bent inlet pipe. Similarly, the pressure ratio can be influenced by altering the circumferential position of the bent inlet pipe relative to the volute, which may have an effect on the unsteady pressure in the rotor section. Therefore, the magnitude of interest spectral frequency is significantly changed by clocking the bent inlet pipe.


Author(s):  
Mark Bever ◽  
Joseph Freitag ◽  
Stuart Linsky ◽  
James M. Myers ◽  
Raymond M. Nuber ◽  
...  

2020 ◽  
Vol 8 (12) ◽  
pp. 1036
Author(s):  
Kyong-Hyon Kim ◽  
Kyeong-Ju Kong

In order to design a diesel engine system and to predict its performance, it is necessary to analyze the gas flow of the intake and exhaust system. Gas flow analysis in a three-dimensional (3D) format needs a high-resolution workstation and an enormous amount of time for analysis. Calculation using the method of characteristics (MOC), which is a gas flow analysis in a one-dimensional (1D) format, has a fast calculation time and can be analyzed with a low-resolution workstation. However, there is a problem with poor accuracy in certain areas. It was assumed that the reason was that 1D could not implement the shape. The error that occurs in the shape of the bent pipe used in the intake and exhaust ports of the diesel engine was analyzed and to find a solution to the low accuracy, the results of the experiment and 1D analysis were compared. The discharge coefficient was calculated using the average mass flow rate, and as a result of applying it, the accuracy was improved for the maximum negative pressure by 0.56–1.93% and the maximum pressure by 3.11–7.86% among the intake pipe pressure results. The difference in phase of the exhaust pipe pressure did not improve. It is considered as a limitation of 1D analysis that does not improve even by applying the discharge coefficient. In the future, we intend to implement a bent pipe that cannot be realized in 1D using a 3D format and to prepare a method to supplement the reliability by using 1D–3D coupling.


2013 ◽  
Vol 765-767 ◽  
pp. 514-519
Author(s):  
Min Chen ◽  
Zhi Guo Zhang

The numerical simulation of the developing turbulent flow through a three-dimensional curved pipe with strong curvature is presented. This numerical simulation is to investigate the flow structure of pipe-flow through a 90° bent pipe with the aid of RNG k-ε turbulence model, which had been well validated for high screwed curvature flow. Dean Motion downstream of the bend are found and presented. And the numerical result demonstrates that Dean motions co-exist with large scale swirling motions inside the bend pipe. Snapshot of velocity and pressure reveals that the structures found upstream of the bend persist after the bend and survive the strong secondary motions induced by the pipe curvature.


Author(s):  
Rui Li ◽  
Hisashi Ninokata ◽  
Michitsugu Mori

Liquid droplet impingement (LDI) erosion could be regarded to be one of the major causes of unexpected troubles occasionally occurred in the inner bent pipe surface. Evaluating the LDI erosion is an important topic of the thermal hydraulics and structural integrity in aging and life extension for nuclear power plants safety. In order to investigate the effect of various parameters, such as droplet diameter, droplet velocity and injected droplet number, on the erosion rate induced by LDI, droplet impingement under different conditions are conducted numerically by a two-phase computational approach. Considering the carrier turbulence kinetic energy attenuation due to the involved droplets, numerical simulations have been performed by using two-way vapor-droplet coupled system. This computational fluid model is built up by incompressible Reynolds Averaged Navier-Stoke equations using standard k-ε model and the SIMPLE algorithm, and the numerical droplet model adopts the Lagrangian approach, a general LDI erosion prediction procedure for bent pipe geometry has been performed to supplement an available CFD code. A correlation for the erosion rate in terms of droplet velocity, diameter and volume fraction is purposed for the engineers’ maintenance reference. Based on our computational results, comparison with an available accident data was made to prove that our methodology could be an appropriate way to simulate and predict the bent pipe wall thinning phenomena.


Sign in / Sign up

Export Citation Format

Share Document