A Wide Input Range 8/16x Time Amplifier with Gated Ring Oscillator Based Time Registers

Author(s):  
Chen Zhang ◽  
Bo Wang ◽  
Cong Lin ◽  
Minghim Lui ◽  
Yiheng Xi
2021 ◽  
Author(s):  
Guangyu Zhu

An all-digitally implemented 1st order and a 2nd order time-mode ΔΣ ADCs are proposed and presented in this dissertation. Each proposed ΔΣ ADC consists of a voltage-to- time integration converter, a seven-stage gated ring oscillator functioning as a 3-bit quantizer, and a 7-stage digital differentiator that provides noise-shaping and frequency feedback. The 2nd order architecture differs from the 1st order by cascading two digital differentiators. The 2nd order design improves noise-shaping characteristic and SNDR. However it does not effectively suppress the harmonic tones due to the non-linear effect of the circuit components. Thus a detailed analysis of the nonlinear characteristics of the modulator is conducted. Designed in IBM 130 nm 1.2 V CMOS technology and with a 100 kHz 100 mV input, the 1st order time-mode ΔΣ ADC exhibits an SNDR of 45.5 dB over 0.4 MHz bandwidth with power dissipation of 1.1mW. In comparison, the 2nd order ADC provides 54.8 dB SNDR, which equivalently offers an ENOB of 8.8 and it consumes 1.45 mW RMS power. The figure- of-merit of the 2nd order time-mode ΔΣ ADC is 407 pJ/step. Since the order of the system cannot be increased by simply cascading more differentiator stages, a time-mode ΔΣ ADC architecture employing a time-mode loop filter is suggested in the last chapter. Several key building blocks including a time amplifier, time register and time adder for implementing such a loop filter are presented. The time amplifier has an input dynamic range of 50ps and provides a gain of 20. The implemented time register has a dynamic range of 5ns and a peak error of 2% over the 5ns full scale. The time adder remains high accuracy as long as the input time difference is no greater than 1:6ns.


2021 ◽  
Author(s):  
Guangyu Zhu

An all-digitally implemented 1st order and a 2nd order time-mode ΔΣ ADCs are proposed and presented in this dissertation. Each proposed ΔΣ ADC consists of a voltage-to- time integration converter, a seven-stage gated ring oscillator functioning as a 3-bit quantizer, and a 7-stage digital differentiator that provides noise-shaping and frequency feedback. The 2nd order architecture differs from the 1st order by cascading two digital differentiators. The 2nd order design improves noise-shaping characteristic and SNDR. However it does not effectively suppress the harmonic tones due to the non-linear effect of the circuit components. Thus a detailed analysis of the nonlinear characteristics of the modulator is conducted. Designed in IBM 130 nm 1.2 V CMOS technology and with a 100 kHz 100 mV input, the 1st order time-mode ΔΣ ADC exhibits an SNDR of 45.5 dB over 0.4 MHz bandwidth with power dissipation of 1.1mW. In comparison, the 2nd order ADC provides 54.8 dB SNDR, which equivalently offers an ENOB of 8.8 and it consumes 1.45 mW RMS power. The figure- of-merit of the 2nd order time-mode ΔΣ ADC is 407 pJ/step. Since the order of the system cannot be increased by simply cascading more differentiator stages, a time-mode ΔΣ ADC architecture employing a time-mode loop filter is suggested in the last chapter. Several key building blocks including a time amplifier, time register and time adder for implementing such a loop filter are presented. The time amplifier has an input dynamic range of 50ps and provides a gain of 20. The implemented time register has a dynamic range of 5ns and a peak error of 2% over the 5ns full scale. The time adder remains high accuracy as long as the input time difference is no greater than 1:6ns.


2013 ◽  
Vol E96.C (6) ◽  
pp. 920-922 ◽  
Author(s):  
Kiichi NIITSU ◽  
Naohiro HARIGAI ◽  
Takahiro J. YAMAGUCHI ◽  
Haruo KOBAYASHI

Author(s):  
Mike Bruce ◽  
Rama R. Goruganthu ◽  
Shawn McBride ◽  
David Bethke ◽  
J.M. Chin

Abstract For time resolved hot carrier emission from the backside, an alternate approach is demonstrated termed single point PICA. The single point approach records time resolved emission from an individual transistor using time-correlated-single-photon counting and an avalanche photo-diode. The avalanche photo-diode has a much higher quantum efficiency than micro-channel plate photo-multiplier tube based imaging cameras typically used in earlier approaches. The basic system is described and demonstrated from the backside on a ring oscillator circuit.


2018 ◽  
Author(s):  
Satish Kodali ◽  
Liangshan Chen ◽  
Yuting Wei ◽  
Tanya Schaeffer ◽  
Chong Khiam Oh

Abstract Optical beam induced resistance change (OBIRCH) is a very well-adapted technique for static fault isolation in the semiconductor industry. Novel low current OBIRCH amplifier is used to facilitate safe test condition requirements for advanced nodes. This paper shows the differences between the earlier and novel generation OBIRCH amplifiers. Ring oscillator high standby leakage samples are analyzed using the novel generation amplifier. High signal to noise ratio at applied low bias and current levels on device under test are shown on various samples. Further, a metric to demonstrate the SNR to device performance is also discussed. OBIRCH analysis is performed on all the three samples for nanoprobing of, and physical characterization on, the leakage. The resulting spots were calibrated and classified. It is noted that the calibration metric can be successfully used for the first time to estimate the relative threshold voltage of individual transistors in advanced process nodes.


Author(s):  
Gaurav Mattey ◽  
Lava Ranganathan

Abstract Critical speed path analysis using Dynamic Laser Stimulation (DLS) technique has been an indispensable technology used in the Semiconductor IC industry for identifying process defects, design and layout issues that limit product speed performance. Primarily by injecting heat or injecting photocurrent in the active diffusion of the transistors, the laser either slows down or speeds up the switching speed of transistors, thereby affecting the overall speed performance of the chip and revealing the speed limiting/enhancing circuits. However, recently on Qualcomm Technologies’ 14nm FinFET technology SOC product, the 1340nm laser’s heating characteristic revealed a Vt (threshold voltage) improvement behavior at low operating voltages which helped identify process issues on multiple memory array blocks across multiple cores failing for MBIST (Memory Built-in Self-test). In this paper, we explore the innovative approach of using the laser to study Vt shifts in transistors due to process issues. We also study the laser silicon interactions through scanning the 1340nm thermal laser on silicon and observing frequency shifts in a high-speed Ring Oscillator (RO) on 16nm FinFET technology. This revealed the normal and reverse Temperature Dependency Gate voltages for 16nm FinFET, thereby illustrating the dual nature of stimulation (reducing mobility and improving Vt) from a thermal laser. Frequency mapping through Laser Voltage Imaging (LVI) was performed on the Ring Oscillator (RO) using the 1340nm thermal laser, while concurrently stimulating the transistors of the RO. Spatial distribution of stimulation was studied by observing the frequency changes on LVI.


Sign in / Sign up

Export Citation Format

Share Document