Antibacterial Properties of Nanometer Fe3+-TiO2 Thin Films

Author(s):  
Huijun Zhang ◽  
Hongmei Liu ◽  
Changsheng Mu ◽  
Chengjun Qiu ◽  
Dajun Wu
Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1349
Author(s):  
Ming-Show Wong ◽  
Man-Ting Sun ◽  
Der-Shan Sun ◽  
Hsin-Hou Chang

Pure titanium dioxide TiO2 photocatalytic substrates exhibit antibacterial activity only when they are irradiated with ultraviolet light, which comprises high-energy wavelengths that damage all life. Impurity doping of TiO2-related materials enables visible light to stimulate photocatalytic activity, which enhances opportunities for TiO2 to be used as a disinfectant in living environments. Boron-doped TiO2 displays visible-light-responsive bactericidal properties. However, because boron-derived compounds also exert notable antibacterial effects, most reports did not clearly demonstrate the extent to which the bactericidal property of boron-doped TiO2 is contributed by visible-light-stimulated photocatalysis. In addition, TiO2 thin films have considerable potential for applications in equipment that requires sterilization; however, the antibacterial properties of boron-doped TiO2 thin films have been examined by only a few studies. We found that boron-doped TiO2 thin films displayed visible-light-driven antibacterial properties. Moreover, because boron compounds may have intrinsic antibacterial properties, using control groups maintained in the dark, we clearly demonstrated that visible light stimulated the photocatalysis of boron-doped TiO2 thin films but not the residue boron compounds display antibacterial property. The bactericidal effects induced by visible light are equally potent for the elimination of the model organism Escherichia coli and human pathogens, such as Acinetobacter baumannii, Staphylococcus aureus, and Streptococcus pyogenes. The antibacterial applications of boron-doped TiO2 thin films are described, and relevant perspectives discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Dan Meng ◽  
Xiuhua Liu ◽  
Yun Xie ◽  
Yang Du ◽  
Yong Yang ◽  
...  

Development of effective antibacterial visible light-activated photocatalytic materials in industries including wastewater treatment and food industry has attracted increasing attention. In this work, Fe-doped TiO2 thin films with different doping levels on a glass substrate were prepared by the sol-gel dip-coating method. The as-prepared films were characterized by Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and atomic force microscope (AFM). Raman spectroscopy and XRD results show the crystalline phase of titanium dioxide was anatase, and the range of the crystal size for the films was 19.24–22.24 nm. XPS results indicate that iron was in the form of Fe3+ in Fe-doped TiO2 films. Regarding the antibacterial properties of TiO2 films, the order of antibacterial activity of TiO2 films was 0.1 at% Fe > 0.5 at% Fe > 1.0 at% TiO2 > bare TiO2 > 2.0 at% Fe > 3.45 at% Fe. 0.1 at% of Fe is the optimum dopant ratio related to antibacterial activity. 0.1 at% Fe-doped TiO2 film is highly efficient in inactivating E. coli under 3 h of visible light irradiation, and it remains efficient even in real dye waste water.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1416
Author(s):  
Endrika Widyastuti ◽  
Fu-Yang Xu ◽  
Chen-Tien Chiu ◽  
Jhen-Hau Jan ◽  
Jue-Liang Hsu ◽  
...  

A pure Ti target in Ar/O2 gas mixture was used to synthesize Ti3Ox thin film on a glass substrate by Reactive High-Power Impulse Magnetron Sputtering (HiPIMS) under different sputtering power (2 and 2.5 kW). The influence of HiPIMS parameters on thin films’ structural, morphological, chemical composition, optical and photocatalytic, and antibacterial properties was investigated. In this study, Ti3Ox thin films can be synthesized using the HiPIMS method without the post-annealing process. Two co-existence phases (hexagonal Ti3O and base-centered monoclinic Ti3O5 phases) existed on the Ti3Ox films. It is found that the peak intensity of (006) Ti3O hexagonal slightly increased as the sputtering power increased from 2 to 2.5 kW. The Ti3Ox thin-film bandgap values were 3.36 and 3.50 eV for 2 and 2.5 kW, respectively. The Ti3Ox films deposited at 2.5 kW showed good photocatalytic activity under UV light irradiation, with a higher methylene blue dye degradation rate than TiO2 thin films. The antibacterial study on Ti3Ox thin films exhibited a high inhibition percentage against E. coli and S. aureus. This study demonstrates that Ti3Ox thin films can promote high photocatalytic and antibacterial activity.


2011 ◽  
Vol 236-238 ◽  
pp. 1789-1792
Author(s):  
Hui Jun Zhang ◽  
Ting Shan Liu ◽  
Jing Liang Cheng ◽  
Dian Zhong Wen ◽  
Akimitsu Hatta

In order to study Antibacterial properties of nanometer TiO2thin films, nanometer M3+-TiO2films have been prepared on glass by RF magnetron co-sputtering method. The films were characterized by SEM, XRD, and AFM. The influence of Fe, Sb elements and calcination temperature on the films structure was investigated. The bactericidal activity for the bacteria cells was estimated by relative number of bacteria survived calculated from the number of viable cells which from colonies on the nutrient agar plates. The nanometer M3+-TiO2thin films exhibited a high antibacterial activity, which was enhanced with the increase of the temperature of thermal treatment and formation of anatase crystalline structure.


2018 ◽  
Vol 18 (3) ◽  
pp. 81-91 ◽  
Author(s):  
C. Lalhriatpuia

Nanopillars-TiO2 thin films was obtained on a borosilicate glass substrate with (S1) and without (S2) polyethylene glycol as template. The photocatalytic behaviour of S1 and S2 thin films was assessed inthe degradation of methylene blue (MB) dye from aqueous solution under batch reactor operations. The thin films were characterized by the SEM, XRD, FTIR and AFM analytical methods. BET specific surface area and pore sizes were also obtained. The XRD data confirmed that the TiO2 particles are in its anatase mineral phase. The SEM and AFM images indicated the catalyst is composed with nanosized pillars of TiO2, evenly distributed on the surface of the substrate. The BET specific surface area and pore sizes of S1 and S2 catalyst were found to be 5.217 and 1.420 m2/g and 7.77 and 4.16 nm respectively. The photocatalytic degradation of MB was well studied at wide range of physico-chemical parameters. The effect of solution pH (pH 4.0 to 10.0) and MB initial concentration (1.0 to 10.0 mg/L) was extensively studied and the effect of several interfering ions, i.e., cadmium nitrate, copper sulfate, zinc chloride, sodium chloride, sodium nitrate, sodium nitrite, glycine, oxalic acid and EDTA in the photocatalytic degradation of MB was demonstrated. The maximum percent removal of MB was observed at pH 8.0 beyond which it started decreasing and a low initial concentration of the pollutant highly favoured the photocatalytic degradation using thin films and the presence of several interfering ions diminished the photocatalytic activity of thin films to some extent. The overall photocatalytic activity was in the order: S2 > S1 > UV. The photocatalytic degradation of MB was followed the pseudo-first-order rate kinetics. The mineralization of MB was studied with total organic carbon measurement using the TOC (total organic carbon) analysis.


2019 ◽  
Vol 7 (1) ◽  
pp. 28
Author(s):  
KOMARAIAH DURGAM ◽  
RADHA EPPA ◽  
REDDY M. V. RAMANA ◽  
KUMAR J. SIVA ◽  
R. SAYANNA ◽  
...  

2011 ◽  
Vol 10 (2) ◽  
pp. 187-192 ◽  
Author(s):  
Ramona-Crina Suciu ◽  
Marcela Corina Rosu ◽  
Teofil Danut Silipas ◽  
Emil Indrea ◽  
Violeta Popescu ◽  
...  

2018 ◽  
Vol 6 (1) ◽  
pp. 22-30
Author(s):  
C. Lalhriatpuia ◽  
◽  
Thanhming liana ◽  
K. Vanlaldinpuia

The photocatalytic activity of Nanopillars-TiO2 thin films was assessed in the degradation of Bromophenol blue (BPB) dye from aqueous solution under batch reactor operations. The thin films were characterized by the XRD, SEM and AFM analytical methods. BET specific surface area and pore sizes were also obtained. The XRD data showed anatase phase of TiO2 particles with average particle size of 25.4 and 21.9 nm, for S1 and S2 catalysts respectively. The SEM and AFM images indicated the catalyst composed with Nanosized pillars of TiO2, evenly distributed on the surface of the substrate. The average height of the pillars was found to be 180 and 40 nm respectively for the S1 and S2 catalyst. The BET specific surface area and pore sizes of S1 and S2 catalyst were found to be 5.217 and 1.420 m2/g and 7.77 and 4.16 nm respectively. The photocatalytic degradation of BPB using the UV light was studied at wide range of physico-chemical parametric studies to determine the mechanism of degradation as well as the practical applicability of the technique. The batch reactor operations were conducted at varied pH (pH 4.0 to 10.0), BPB initial concentration (1.0 to 20.0 mg/L) and presence of several interfering ions, i.e., cadmium nitrate, copper sulfate, zinc chloride, sodium chloride, sodium nitrate, sodium nitrite, glycine, oxalic acid and EDTA in the photocatalytic degradation of BPB. The maximum percent removal of BPB was observed at pH 6.0 and a low initial concentration of the pollutant highly favours the photocatalytic degradation using thin films. The presence of several interfering ions suppressed the photocatalytic activity of thin films to some extent. The time dependence photocatalytic degradation of BPB was demonstrated with the pseudo-first-order rate kinetics. Study was further extended with total organic carbon measurement using the TOC (Total Organic Carbon) analysis. This demonstrated an apparent mineralization of BPB from aqueous solutions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1409
Author(s):  
Ofelia Durante ◽  
Cinzia Di Giorgio ◽  
Veronica Granata ◽  
Joshua Neilson ◽  
Rosalba Fittipaldi ◽  
...  

Among all transition metal oxides, titanium dioxide (TiO2) is one of the most intensively investigated materials due to its large range of applications, both in the amorphous and crystalline forms. We have produced amorphous TiO2 thin films by means of room temperature ion-plasma assisted e-beam deposition, and we have heat-treated the samples to study the onset of crystallization. Herein, we have detailed the earliest stage and the evolution of crystallization, as a function of both the annealing temperature, in the range 250–1000 °C, and the TiO2 thickness, varying between 5 and 200 nm. We have explored the structural and morphological properties of the as grown and heat-treated samples with Atomic Force Microscopy, Scanning Electron Microscopy, X-ray Diffractometry, and Raman spectroscopy. We have observed an increasing crystallization onset temperature as the film thickness is reduced, as well as remarkable differences in the crystallization evolution, depending on the film thickness. Moreover, we have shown a strong cross-talking among the complementary techniques used displaying that also surface imaging can provide distinctive information on material crystallization. Finally, we have also explored the phonon lifetime as a function of the TiO2 thickness and annealing temperature, both ultimately affecting the degree of crystallinity.


Sign in / Sign up

Export Citation Format

Share Document