Antibacterial Properties of M3+-TiO2 Thin Films by RF Magnetron Co-Sputtering

2011 ◽  
Vol 236-238 ◽  
pp. 1789-1792
Author(s):  
Hui Jun Zhang ◽  
Ting Shan Liu ◽  
Jing Liang Cheng ◽  
Dian Zhong Wen ◽  
Akimitsu Hatta

In order to study Antibacterial properties of nanometer TiO2thin films, nanometer M3+-TiO2films have been prepared on glass by RF magnetron co-sputtering method. The films were characterized by SEM, XRD, and AFM. The influence of Fe, Sb elements and calcination temperature on the films structure was investigated. The bactericidal activity for the bacteria cells was estimated by relative number of bacteria survived calculated from the number of viable cells which from colonies on the nutrient agar plates. The nanometer M3+-TiO2thin films exhibited a high antibacterial activity, which was enhanced with the increase of the temperature of thermal treatment and formation of anatase crystalline structure.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Dan Meng ◽  
Xiuhua Liu ◽  
Yun Xie ◽  
Yang Du ◽  
Yong Yang ◽  
...  

Development of effective antibacterial visible light-activated photocatalytic materials in industries including wastewater treatment and food industry has attracted increasing attention. In this work, Fe-doped TiO2 thin films with different doping levels on a glass substrate were prepared by the sol-gel dip-coating method. The as-prepared films were characterized by Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and atomic force microscope (AFM). Raman spectroscopy and XRD results show the crystalline phase of titanium dioxide was anatase, and the range of the crystal size for the films was 19.24–22.24 nm. XPS results indicate that iron was in the form of Fe3+ in Fe-doped TiO2 films. Regarding the antibacterial properties of TiO2 films, the order of antibacterial activity of TiO2 films was 0.1 at% Fe > 0.5 at% Fe > 1.0 at% TiO2 > bare TiO2 > 2.0 at% Fe > 3.45 at% Fe. 0.1 at% of Fe is the optimum dopant ratio related to antibacterial activity. 0.1 at% Fe-doped TiO2 film is highly efficient in inactivating E. coli under 3 h of visible light irradiation, and it remains efficient even in real dye waste water.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1416
Author(s):  
Endrika Widyastuti ◽  
Fu-Yang Xu ◽  
Chen-Tien Chiu ◽  
Jhen-Hau Jan ◽  
Jue-Liang Hsu ◽  
...  

A pure Ti target in Ar/O2 gas mixture was used to synthesize Ti3Ox thin film on a glass substrate by Reactive High-Power Impulse Magnetron Sputtering (HiPIMS) under different sputtering power (2 and 2.5 kW). The influence of HiPIMS parameters on thin films’ structural, morphological, chemical composition, optical and photocatalytic, and antibacterial properties was investigated. In this study, Ti3Ox thin films can be synthesized using the HiPIMS method without the post-annealing process. Two co-existence phases (hexagonal Ti3O and base-centered monoclinic Ti3O5 phases) existed on the Ti3Ox films. It is found that the peak intensity of (006) Ti3O hexagonal slightly increased as the sputtering power increased from 2 to 2.5 kW. The Ti3Ox thin-film bandgap values were 3.36 and 3.50 eV for 2 and 2.5 kW, respectively. The Ti3Ox films deposited at 2.5 kW showed good photocatalytic activity under UV light irradiation, with a higher methylene blue dye degradation rate than TiO2 thin films. The antibacterial study on Ti3Ox thin films exhibited a high inhibition percentage against E. coli and S. aureus. This study demonstrates that Ti3Ox thin films can promote high photocatalytic and antibacterial activity.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Mitsunori Yada ◽  
Yuko Inoue ◽  
Iwao Noda ◽  
Tomohiro Morita ◽  
Toshio Torikai ◽  
...  

A sodium titanate nanofiber thin film and a silver nanoparticle/silver titanate nanofiber thin film formed on the surface of a titanium plate exhibited strong antibacterial activities against methicillin-resistantStaphylococcus aureus, which is one of the major bacteria causing in-hospital infections. Exposure of the sodium titanate nanofiber thin film to ultraviolet rays generated a high antibacterial activity due to photocatalysis and the sodium titanate nanofiber thin film immediately after its synthesis possessed a high antibacterial activity even without exposure to ultraviolet rays. Elution of silver from the silver nanoparticle/silver titanate nanofiber thin film caused by the silver ion exchange reaction was considered to contribute substantially to the strong antibacterial activity. The titanate nanofiber thin films adhered firmly to titanium. Therefore, these titanate nanofiber thin film/titanium composites will be extremely useful as implant materials that have excellent antibacterial activities.


2021 ◽  
pp. 152808372110117
Author(s):  
Sommai Pivsa-Art ◽  
Komson Sunyikhan ◽  
Weraporn Pivsa-Art

Recycled poly(ethylene terephthalate) (RPET) multifilament yarns are used in carpet manufacturing as a way to reduce plastic waste. The conventional RPET carpet is however susceptible to bacterial accumulation. As a result, this research experimentally doped RPET with nano-structure titanium dioxide (nano-TiO2) to produce RPET/nano-TiO2 bicomponent multifilament yarns with antibacterial property. The experimental multifilament yarn structure consisted of two parts: neat RPET core and RPET/nano-TiO2 shell. The nano-TiO2 content in the shell was varied between 1 and 3 wt% and the core/shell (C/S) ratios between 90/10, 70/30, and 50/50 w/w. The effects of C/S ratio and nano-TiO2 content on the mechanical and antibacterial properties of bicomponent multifilament yarns were determined. The experimental results indicated that the C/S ratio had no effect on the tenacity and elongation at break. Meanwhile, the tenacity and elongation at break of bicomponent fibers increased with nano-TiO2 content in the shell. The TiO2-doped RPET bicomponent yarns effectively inhibited the growth of Escherichia coli and Staphylococcus aureus. The 90/10 bicomponent multifilament fiber with 3 wt% TiO2 achieved the highest antibacterial activity. The very high antibacterial activity was attributable to greater deposition of nano-TiO2 particles near and on the shell surface.


2015 ◽  
Vol 16 (1) ◽  
pp. 171-179
Author(s):  
Yuphada Boonto ◽  
Jirapat Ananpattarachai ◽  
Puangrat Kajitvichyanukul

Silver nanoparticles (AgNPs) have antibacterial properties and are widely used for water disinfection. This technology is commercially applied in point-of-use water treatment as a post-treatment for filtrate water. However, the current process of synthesizing AgNPs has several disadvantages including the use of hazardous chemicals, consumption of a large amount of energy and the formation of hazardous byproducts. Here, we report an alternative and green synthesis using plant extracts. In this work, the plant extracts came from radish (R) and tea (T), and the AgNPs were derived from a microwave irradiation method. The AgNPs synthesized by chemical-based microwave irradiation (Ag-C) were also used as a control material. The novel method produced a smaller size of nanostructures with good dispersion ability and less agglomeration than those from chemical synthesis. The antibacterial properties of AgNPs on Gram-negative bacteria Escherichia coli (E. coli) and Gram-positive bacteria Staphylococcus aureus (S. aureus) were investigated. The results revealed that AgNPs from both green synthesis and chemical-based methods inactivated both types of bacteria. The green-synthesized AgNPs from radish juice provided a higher percentage of inhibition of E. coli than that of S. aureus. The inactivation rates of the AgNPs increased with increasing concentration of AgNPs. As the concentration of the Ag/AgCl-R and Ag-R increased from 150 μg/mL to 300 μg/mL, complete inactivation required a reduced time for the reaction from 300 minutes to only 30 minutes. Finally, the Ag/AgCl-R and Ag-R offered high antibacterial activity while the Ag-T provided the lowest antibacterial activity. This work provides an alternative method for the eco-synthesis of antibacterial nanomaterials for water treatment.


2018 ◽  
Vol 25 (06) ◽  
pp. 1850111 ◽  
Author(s):  
ALI A. TAHA ◽  
SELMA M. H. AL-JAWAD ◽  
MOHAMMED M. SALIM

In this study, titanium dioxide thin films were successfully prepared via sol–gel method. Titanium tetraisopropoxide (TTIP) as a precursor solution was used to prepare different concentrations and deposited by spin coating. All prepared films were inspected by X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). XRD patterns show that all samples have anatase crystal structure. Transmittance spectra were measured by using UV-Vis spectrophotometer. The optical band gaps were 3.55, 3.62 and 3.78 eV for TTIP concentrations of 6, 6.3 and 6.6[Formula: see text]ml, respectively. Antibacterial activity of TiO2 films against S. aureus and E. coli was evaluated by international recognized test (JIS Z 2801). The test revealed incrementally increase in antibacterial activity of the films with TTIP concentrations activated by UV light.


2020 ◽  
Vol 26 (1) ◽  
pp. 84-98
Author(s):  
Yasutaka Shimotori ◽  
Masayuki Hoshi ◽  
Narihito Ogawa ◽  
Tetsuo Miyakoshi ◽  
Taisei Kanamoto

Abstract5-Acetoxy- and 5-hydroxyalkanethioamide analogues showed high antibacterial activity against Staphylococcus aureus. Antibacterial thioamides were prepared from 5-alkyl-δ-lactones by amidation, thionation, and subsequent deacetylation. Optically active thioamides with 99% diastereomeric excesses were prepared by diastereomeric resolution using Cbz-L-proline as the resolving agent. Antibacterial thioamides were slowly lactonized by a lipase catalyst. Therefore, these thioamides are potential sustained-release perfume compounds having antibacterial properties.


Sign in / Sign up

Export Citation Format

Share Document