Directional delay spread characteristics based on indoor channel measurements at 28GHz

Author(s):  
Myung-Don Kim ◽  
Jinyi Liang ◽  
Heon-Kook Kwon ◽  
Juyul Lee
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Juyul Lee ◽  
Myung-Don Kim ◽  
Hyun Kyu Chung ◽  
Jinup Kim

This paper presents a NLOS (non-line-of-sight) path loss model for low-height antenna links in rectangular street grids to account for typical D2D (device-to-device) communication link situations in high-rise urban outdoor environments. From wideband propagation channel measurements collected in Seoul City at 3.7 GHz, we observed distinctive power delay profile behaviors between 1-Turn and 2-Turn NLOS links: the 2-Turn NLOS has a wider delay spread. This can be explained by employing the idea that the 2-Turn NLOS has multiple propagation paths along the various street roads from TX to RX, whereas the 1-Turn NLOS has a single dominant propagation path from TX to RX. Considering this, we develop a path loss model encompassing 1-Turn and 2-Turn NLOS links with separate scattering and diffraction parameters for the first and the second corners, based on the Uniform Geometrical Theory of Diffraction. In addition, we consider the effect of building heights on path loss by incorporating an adjustable “waveguide effect” parameter; that is, higher building alleys provide better propagation environments. When compared with field measurements, the predictions are in agreement.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yi Zeng ◽  
Haofan Yi ◽  
Zijie Xia ◽  
Shaoshi Wang ◽  
Bo Ai ◽  
...  

Intelligent Transportation System (ITS) is more and more crucial in the modern transportation field, such as the applications of autonomous vehicles, dynamic traffic light sequences, and automatic road enforcement. As the upcoming fifth-generation mobile network (5G) is entering the deployment phase, the idea of cellular vehicle-to-everything (C-V2X) is proposed. The same 5G networks, coming to mobile phones, will also allow vehicles to communicate wirelessly with each other. Hence, 3.5 GHz, as the main sub-6 GHz band licensed in 5G, is focused in our study. In this paper, a comprehensive study on the channel characteristics for vehicle-to-infrastructure (V2I) link at 3.5 GHz frequency band is conducted through channel measurements and ray-tracing (RT) simulations. Firstly, the channel parameters of the V2I link are characterized based on the measurements, including power delay profile (PDP), path loss, root-mean-square (RMS) delay spread, and coherence bandwidth. Then, the measurement-validated RT simulator is utilized to conduct the simulations in order to supplement other channel parameters, in terms of the Ricean K-factor, angular spreads, the cross-correlations of abovementioned parameters, and the autocorrelation of each parameter itself. This work is aimed at helping the researchers understand the channel characteristics of the V2I link at 3.5 GHz and support the link-level and system level design for future vehicular communications of 5G.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 750 ◽  
Author(s):  
Wout Debaenst ◽  
Arne Feys ◽  
Iñigo Cuiñas ◽  
Manuel García Sánchez ◽  
Jo Verhaevert

Our society has become fully submersed in fourth generation (4G) technologies, setting constant connectivity as the norm. Together with self-driving cars, augmented reality, and upcoming technologies, the new generation of Internet of Things (IoT) devices is pushing the development of fifth generation (5G) communication systems. In 5G architecture, increased capacity, improved data rate, and decreased latency are the objectives. In this paper, a measurement campaign is proposed; we focused on studying the propagation properties of microwaves at a center frequency of 3.5 GHz, commonly used in 5G cellular networks. Wideband measurement data were gathered at various indoor environments with different dimensions and characteristics. A ray-tracing analysis showed that the power spectrum is dominated by the line of sight component together with reflections on two sidewalls, indicating the practical applicability of our results. Two wideband parameters, root mean square delay spread and coherence bandwidth, were estimated for the considered scenarios, and we found that they are highly dependent on the physical dimension of the environment rather than on furniture present in the room. The relationship between both parameters was also investigated to provide support to network planners when obtaining the bandwidth from the delay spread, easily computed by a ray-tracing tool.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Qi Wang ◽  
Bo Ai ◽  
Ke Guan ◽  
David W. Matolak ◽  
Ruisi He ◽  
...  

According to the demands for fifth-generation (5G) communication systems, high frequency bands (above 6 GHz) need to be adopted to provide additional spectrum. This paper investigates the characteristics of indoor corridor channels at 15 GHz. Channel measurements with a vector network analyzer in two corridors were conducted. Based on a ray-optical approach, a deterministic channel model covering both antenna and propagation characteristic is presented. The channel model is evaluated by comparing simulated results of received power and root mean square delay spread with the corresponding measurements. By removing the impact of directional antennas from the transmitter and receiver, a path loss model as well as small-scale fading properties for typical corridors is presented based on the generated samples from the deterministic model. Results show that the standard deviation of path loss variation is related to the Tx height, and placing the Tx closer to the ceiling leads to a smaller fluctuation of path loss.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2015
Author(s):  
Ahmed Al-Saman ◽  
Marshed Mohamed ◽  
Michael Cheffena ◽  
Arild Moldsvor

Wireless data traffic has increased significantly due to the rapid growth of smart terminals and evolving real-time technologies. With the dramatic growth of data traffic, the existing cellular networks including Fifth-Generation (5G) networks cannot fully meet the increasingly rising data rate requirements. The Sixth-Generation (6G) mobile network is expected to achieve the high data rate requirements of new transmission technologies and spectrum. This paper presents the radio channel measurements to study the channel characteristics of 6G networks in the 107–109 GHz band in three different industrial environments. The path loss, K-factor, and time dispersion parameters are investigated. Two popular path loss models for indoor environments, the close-in free space reference distance (CI) and floating intercept (FI), are used to examine the path loss. The mean excess delay (MED) and root mean squared delay spread (RMSDS) are used to investigate the time dispersion of the channel. The path loss results show that the CI and FI models fit the measured data well in all industrial settings with a path loss exponent (PLE) of 1.6–2. The results of the K-factor show that the high value in industrial environments at the sub-6 GHz band still holds well in our measured environments at a high frequency band above 100 GHz. For the time dispersion parameters, it is found that most of the received signal energy falls in the early delay bins. This work represents a first step to establish the feasibility of using 6G networks operating above 100 GHz for industrial applications.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Shuang-de Li ◽  
Yuan-jian Liu ◽  
Le-ke Lin ◽  
Zhong Sheng ◽  
Xiang-chen Sun ◽  
...  

Propagation measurements of wireless channels performed in the tunnel environments at 6 GHz are presented in this paper. Propagation characteristics are simulated and analyzed based on the method of shooting and bouncing ray tracing/image (SBR/IM). A good agreement is achieved between the measured results and simulated results, so the correctness of SBR/IM method has been validated. The measured results and simulated results are analyzed in terms of path loss models, received power, root mean square (RMS) delay spread, Ricean K-factor, and angle of arrival (AOA). The omnidirectional path loss models are characterized based on close-in (CI) free-space reference distance model and the alpha-beta-gamma (ABG) model. Path loss exponents (PLEs) are 1.50–1.74 in line-of-sight (LOS) scenarios and 2.18–2.20 in non-line-of-sight (NLOS) scenarios. Results show that CI model with the reference distance of 1 m provides more accuracy and stability in tunnel scenarios. The RMS delay spread values vary between 2.77 ns and 18.76 ns. Specially, the Poisson distribution best fits the measured data of RMS delay spreads for LOS scenarios and the Gaussian distribution best fits the measured data of RMS delay spreads for NLOS scenarios. Moreover, the normal distribution provides good fits to the Ricean K-factor. The analysis of the abovementioned results from channel measurements and simulations may be utilized for the design of wireless communications of future 5G radio systems at 6 GHz.


Author(s):  
Brecht De Beelde ◽  
Andrés Almarcha Lopéz ◽  
David Plets ◽  
Marwan Yusuf ◽  
Emmeric Tanghe ◽  
...  

Abstract Wireless connectivity has been realized for multiple environments and different frequency bands. However, little research exists about mmWave communication in industrial environments. This paper presents the 60 GHz double-directional radio channel for mmWave communication in a ship hull for Line-of-Sight (LOS) and non-Line-of-Sight (NLOS) conditions. We performed channel measurements using the Terragraph channel sounder at different locations in the ship hull and fitted LOS path loss to a one-slope path loss model. Path loss and root-mean-square delay spread of the LOS path is compared to the reflected path with lowest path loss. NLOS communication via this first-order reflected path is modeled by calculating the path distance and determining the reflection loss. The reflection losses have a considerable contribution to the signal attenuation of the reflected path. The channel models are implemented in an indoor coverage prediction tool, which was extended with a ray launching algorithm and validated by comparison with an analytical electromagnetic solver. The results show that the mmWave radio channel allows high-throughput communication within a ship hull compartment, even when no LOS path between the transmitter and receiver is present.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Pan Tang ◽  
Jianhua Zhang ◽  
Zuolong Ying ◽  
Yuxiang Zhang ◽  
Lei Tian ◽  
...  

The tripolarized MIMO system can provide one more degree of freedom and have a more compacted size over a dual-polarized MIMO system, which is attractive for high-capacity wireless communication systems. In this paper, we analyze and model channel properties for tripolarized MIMO systems based on experimental channel measurements in typical indoor and outdoor scenarios. Firstly, channel measurement campaigns in the laboratory and the Urban Micro (UMi) scenarios on sub-6 GHz bands are presented. Then, based on measured data, path loss, delay spread (DS), and cross-polarization discrimination (XPD) for 9 polarization combinations are analyzed and modeled in a statistical way. Statistical results of these channel properties are also given. It is observed that channel properties of both large-scale fading and small-scale fading depend strongly on the polarization direction. Furthermore, we evaluate the performance of tripolarized MIMO systems by analyzing the Demmel condition number and channel capacity gain (CG). For both the indoor and the outdoor scenarios, it is found that colocated tripolarized antenna can bring a nearly threefold CG with respect to the unipolarized one. These results can give good insights into the design and evaluation of tripolarized MIMO systems.


Sign in / Sign up

Export Citation Format

Share Document