11.7b Time-To-Digital Converter with 0.82ps resolution in 130nm CMOS Technology

Author(s):  
Rodrigo Granja ◽  
Mauro Santos ◽  
Jorge Guilherme ◽  
Nuno Horta
2018 ◽  
Vol 28 (02) ◽  
pp. 1950021
Author(s):  
B. Ghanavati ◽  
E. Abiri ◽  
M. R. Salehi ◽  
N. Azhdari

In this paper, a two-stage time interpolation time-to-digital converter (TDC) is proposed to achieve adequate resolution and wide dynamic range for measuring R-R intervals in QRS detection. The architecture is based on a coarse counter and a couple of two-stage interpolator circuit in order to improve the conversion linearity. The proposed TDC is modeled with the neural network, while the teacher–learner-based optimization algorithm (TLBO) is used to optimize the integral nonlinearity (INL) of the proposed TDC. The proposed optimization method shows a characteristic close to the ideal output of the TDC behavior over a wide input range. Using the achieved results of the TLBO algorithm simulation results using CADENCE VIRTUOSO and standard 180[Formula: see text]nm CMOS technology shows 1.2[Formula: see text]s dynamic range, 100[Formula: see text]ns resolution, 0.19[Formula: see text]mW power consumption and area of 0.16[Formula: see text]mm2. The proposed circuit can find application in biomedical engineering systems and other fields where long and accurate time interval measurement is needed.


2019 ◽  
Vol 29 (08) ◽  
pp. 2050124
Author(s):  
Farshad Goodarzi ◽  
Siroos Toofan

This paper describes a 9-bit time-to-digital converter (TDC) with 3.6 ps resolution. The resolution of 3.6 ps is achieved using coarse and fine structure. The structure of the proposed two-step pipeline TDC is composed of a 4-bit coarse TDC (CTDC) based on delay line and a 5-bit fine TDC (FTDC) based on an SAR-CD algorithm where a Time Amplifier (TA) is used between them. Since TA amplifies the time intervals in different stages of delay line to achieve accurate gain with wide linear range. Therefore, the TDC has good linearity. The proposed TDC has Differential Non-Linearity (DNL) and Integral Non-Linearity (INL) errors of 1.6 and 2.6 LSB, respectively. This TDC was designed in 0.18[Formula: see text][Formula: see text]m CMOS technology. Using a supply voltage of 1.8[Formula: see text]V, the proposed TDC consumes 1.88[Formula: see text]mW at 25 MS/s throughput.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 558 ◽  
Author(s):  
Bjorn Van Bockel ◽  
Jeffrey Prinzie ◽  
Paul Leroux

This article presents a radiation tolerant single-shot time-to-digital converter (TDC) with a resolution of 15.6 ps, fabricated in a 65 nm complementary metal oxide semiconductor (CMOS) technology. The TDC is based on a multipath pseudo differential ring oscillator with reduced phase delay, without the need for calibration or interpolation. The ring oscillator is placed inside a Phase Locked Loop (PLL) to compensate for Process, Voltage and Temperature (PVT) variations- and variations due to ionizing radiation. Measurements to evaluate the performance of the TDC in terms of the total ionizing dose (TID) were done. Two different samples were irradiated up to a dose of 2.2 MGy SiO 2 while still maintaining a resolution of 15.6 ps. The TDC has a differential non-linearity (DNL) and integral non-linearity (INL) of 0.22 LSB rms and 0.34 LSB rms respectively.


2021 ◽  
Author(s):  
Parth Parekh

This report presents a low-power time integrator and its applications in an all-digital first-order ΔΣ time-to-digital converter (TDC). Time-to-Digital Converter (TDC) that map a time variable to a digital code is the most important building blocks of time-mode circuits. The time integrator is realized using a bi-directional gated delay line (BD-GDL) with time variable to be integrated as the gating signal. The integration of the time variable is obtained via the accumulation of the charge of the load capacitor and the logic state of gated delay stages. Issues affecting the performance of the time integrator and TDC are examined. The all-digital first-order ΔΣ TDC utilizing the time integrator was designed in using IBM 130 nm 1.2 V CMOS technology and analysed using Spectre ASP from Cadence Design Systems with BSIM4 models. A sinusoid time input of 333 ps amplitude and 231 kHz frequency with an oversampling ratio 68 was digitized by the modulator. The TDC provides first-order noise-shaping and a SNR of 34.64 dB over the signal band 48.27 ~ 231 kHz while consuming 293.8 μW.


2021 ◽  
Author(s):  
Parth Parekh

This report presents a low-power time integrator and its applications in an all-digital first-order ΔΣ time-to-digital converter (TDC). Time-to-Digital Converter (TDC) that map a time variable to a digital code is the most important building blocks of time-mode circuits. The time integrator is realized using a bi-directional gated delay line (BD-GDL) with time variable to be integrated as the gating signal. The integration of the time variable is obtained via the accumulation of the charge of the load capacitor and the logic state of gated delay stages. Issues affecting the performance of the time integrator and TDC are examined. The all-digital first-order ΔΣ TDC utilizing the time integrator was designed in using IBM 130 nm 1.2 V CMOS technology and analysed using Spectre ASP from Cadence Design Systems with BSIM4 models. A sinusoid time input of 333 ps amplitude and 231 kHz frequency with an oversampling ratio 68 was digitized by the modulator. The TDC provides first-order noise-shaping and a SNR of 34.64 dB over the signal band 48.27 ~ 231 kHz while consuming 293.8 μW.


2011 ◽  
Vol 2011 ◽  
pp. 1-9
Author(s):  
Ni Xu ◽  
Woogeun Rhee ◽  
Zhihua Wang

This paper describes recent semidigital architectures of the phase-locked loop (PLL) systems for low-cost low-power clock generation. With the absence of the time-to-digital converter (TDC), the semi-digital PLL (SDPLL) enables low-power linear phase detection and does not necessarily require advanced CMOS technology while maintaining a technology scalability feature. Two design examples in 0.18 μm CMOS and 65 nm CMOS are presented with hardware and simulation results, respectively.


Sign in / Sign up

Export Citation Format

Share Document