4-Channel Front-End Integrated Circuit For Readout of Large Area of SiPM under Liquid Argon

Author(s):  
Alejandro D. Martinez R.
Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 231
Author(s):  
Chester Sungchung Park ◽  
Sunwoo Kim ◽  
Jooho Wang ◽  
Sungkyung Park

A digital front-end decimation chain based on both Farrow interpolator for fractional sample-rate conversion and a digital mixer is proposed in order to comply with the long-term evolution standards in radio receivers with ten frequency modes. Design requirement specifications with adjacent channel selectivity, inband blockers, and narrowband blockers are all satisfied so that the proposed digital front-end is 3GPP-compliant. Furthermore, the proposed digital front-end addresses carrier aggregation in the standards via appropriate frequency translations. The digital front-end has a cascaded integrator comb filter prior to Farrow interpolator and also has a per-carrier carrier aggregation filter and channel selection filter following the digital mixer. A Farrow interpolator with an integrate-and-dump circuitry controlled by a condition signal is proposed and also a digital mixer with periodic reset to prevent phase error accumulation is proposed. From the standpoint of design methodology, three models are all developed for the overall digital front-end, namely, functional models, cycle-accurate models, and bit-accurate models. Performance is verified by means of the cycle-accurate model and subsequently, by means of a special C++ class, the bitwidths are minimized in a methodic manner for area minimization. For system-level performance verification, the orthogonal frequency division multiplexing receiver is also modeled. The critical path delay of each building block is analyzed and the spectral-domain view is obtained for each building block of the digital front-end circuitry. The proposed digital front-end circuitry is simulated, designed, and both synthesized in a 180 nm CMOS application-specific integrated circuit technology and implemented in the Xilinx XC6VLX550T field-programmable gate array (Xilinx, San Jose, CA, USA).


Author(s):  
Zu-Jia Lo ◽  
Bipasha Nath ◽  
Yuan-Chuan Wang ◽  
Yun-Jie Huang ◽  
Hui-Chun Huang ◽  
...  

1991 ◽  
Vol 37 (3) ◽  
pp. 585-591 ◽  
Author(s):  
A. Baschirotto ◽  
M. Cassis ◽  
P. Kirchlechner ◽  
F. Montecchi ◽  
G. Palmisano ◽  
...  
Keyword(s):  

Author(s):  
Aiza Marie E. Agudon ◽  
Bryan Christian S. Bacquian

Semiconductor Companies and Industries soar high as the trend for electronic gadgets and devices increases. Transition from “manual” to “fully automatic” application is one of the advantages why consumer adapt to changes and prefer electronic devices as one of daily answers. Individuals who admire these electronic devices often ask how they are made. As we look inside each device, we can notice interconnected microchips commonly called IC (Integrated Circuit). These are specially prepared silicon wafers where integrated circuit are developed. Commonly, each device is composed of numerous microchips depending on the design and functionality IC production is processed from “front-end” to “back-end” assembly. Front-end assembly includes wafer fabrication where electrical circuitry is prepared and integrated to every single silicon wafers. Back-end assembly covers processing the wafer by cutting into smaller individual and independent components called “dice”. Each dice will be placed into Leadframe, bonded with wires prior encapsulating with mold compounds. After molding, each IC will be cut through a process called singulation. Afterwards, all molded units are subjected for functional testing. Dice is central to each IC; it is where miniature transistor, resistor and capacitor are integrated to form complex small circuitry in microchips. Pre-assembly (Pre-assy) stations have the first hand prior to all succeeding stations. Live wafers are primary direct materials processed in these stations. Robust work instruction and parameter must be practiced during handling and processing to avoid gross rejection and possible work-related defects. The paper is all about the challenges to resolve and improved the backside chippings in 280um wafer thickness in mechanical dicing saw. The conventional Mechanical dicing process induce a lot of mechanical stress and vibration during the cutting process which oftentimes lead to backside chipping and die crack issues. However, backside chippings can mitigate with proper selection of parameter settings and understand the silicon wafer properties.


Author(s):  
G. De Geronimo ◽  
A. D'Andragora ◽  
Shaorui Li ◽  
N. Nambiar ◽  
S. Rescia ◽  
...  
Keyword(s):  

2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000146-000153 ◽  
Author(s):  
Bruce W. Ohme ◽  
Mark R. Larson ◽  
Bhal Tulpule ◽  
Alireza Behbahani

Analog functions have been implemented in a Silicon-on-Insulator (SOI) process optimized for high-temperature (>225°C) operation. These include a linear regulator/reference block that supports input voltages up to 50V and provides multiple independent voltage outputs. Additional blocks provide configurable sensor excitation levels of up to 10V DC and/or 20V AC-differential, with current limiting and monitoring. A dual-channel Programmable-Gain-Instrumentation Amplifier (PGIA) and a high-level AC input block with programmable gain and offset serve signal conditioning, gain, and scaling needs. A multiplexer and analog buffer provide an output that is scaled and centered for down-stream A-to-D conversion. Limited component availability and high component counts deter development of sensing and control electronics for extreme temperature (>200°) applications. Systems require front-end power conditioning, sensor excitation and monitoring, response amplification, scaling, and multiplexing. Back-end Analog-to-Digital conversion and digital processing/control can be implemented using one or two integrated circuit chips, whereas the front-end functions require component counts in the dozens. The low level of integration in the available portfolio of SOI devices results in high component count when constructing signal conditioning interfaces for aerospace sensors. These include quasi-DC sensors such as thermo-couples, strain-gauges, bridge transducers as well as AC-coupled sensors and position transducers, such as Linear Variable Differential Transducers (LVDT's). Furthermore, a majority of sensor applications are best served by excitation/response voltage ranges that typically exceed the voltage range of digital electronics (either 5V or 3.3V in currently available digital IC's for use above 200°C). These constraints led Embedded Systems LLC to design a generic device which was implemented by Honeywell as an analog ASIC (Application Specific Integrated Circuit). This paper will describe the ASIC block-level capabilities in the context of the typical applications and present characterization data from wafer-level testing at the target temperature range (225C). This material is based upon work performed by Honeywell International under a subcontract from Embedded Systems LLC, funding for which was provided by the U.S. Air Force Small Business Innovative Research program.


Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 342 ◽  
Author(s):  
Tanja Braun ◽  
Karl-Friedrich Becker ◽  
Ole Hoelck ◽  
Steve Voges ◽  
Ruben Kahle ◽  
...  

Fan-out wafer level packaging (FOWLP) is one of the latest packaging trends in microelectronics. Besides technology developments towards heterogeneous integration, including multiple die packaging, passive component integration in packages and redistribution layers or package-on-package approaches, larger substrate formats are also targeted. Manufacturing is currently done on a wafer level of up to 12”/300 mm and 330 mm respectively. For a higher productivity and, consequently, lower costs, larger form factors are introduced. Instead of following the wafer level roadmaps to 450 mm, panel level packaging (PLP) might be the next big step. Both technology approaches offer a lot of opportunities as high miniaturization and are well suited for heterogeneous integration. Hence, FOWLP and PLP are well suited for the packaging of a highly miniaturized energy harvester system consisting of a piezo-based harvester, a power management unit and a supercapacitor for energy storage. In this study, the FOWLP and PLP approaches have been chosen for an application-specific integrated circuit (ASIC) package development with integrated SMD (surface mount device) capacitors. The process developments and the successful overall proof of concept for the packaging approach have been done on a 200 mm wafer size. In a second step, the technology was scaled up to a 457 × 305 mm2 panel size using the same materials, equipment and process flow, demonstrating the low cost and large area capabilities of the approach.


Sign in / Sign up

Export Citation Format

Share Document