scholarly journals Fan-Out Wafer and Panel Level Packaging as Packaging Platform for Heterogeneous Integration

Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 342 ◽  
Author(s):  
Tanja Braun ◽  
Karl-Friedrich Becker ◽  
Ole Hoelck ◽  
Steve Voges ◽  
Ruben Kahle ◽  
...  

Fan-out wafer level packaging (FOWLP) is one of the latest packaging trends in microelectronics. Besides technology developments towards heterogeneous integration, including multiple die packaging, passive component integration in packages and redistribution layers or package-on-package approaches, larger substrate formats are also targeted. Manufacturing is currently done on a wafer level of up to 12”/300 mm and 330 mm respectively. For a higher productivity and, consequently, lower costs, larger form factors are introduced. Instead of following the wafer level roadmaps to 450 mm, panel level packaging (PLP) might be the next big step. Both technology approaches offer a lot of opportunities as high miniaturization and are well suited for heterogeneous integration. Hence, FOWLP and PLP are well suited for the packaging of a highly miniaturized energy harvester system consisting of a piezo-based harvester, a power management unit and a supercapacitor for energy storage. In this study, the FOWLP and PLP approaches have been chosen for an application-specific integrated circuit (ASIC) package development with integrated SMD (surface mount device) capacitors. The process developments and the successful overall proof of concept for the packaging approach have been done on a 200 mm wafer size. In a second step, the technology was scaled up to a 457 × 305 mm2 panel size using the same materials, equipment and process flow, demonstrating the low cost and large area capabilities of the approach.

2019 ◽  
Vol 9 (3) ◽  
pp. 487 ◽  
Author(s):  
Shuping Xie ◽  
Xinjun Wan ◽  
Xiaoxiao Wei

The design and manufacture of cost-effective miniaturized optics at wafer level, usingadvanced semiconductor-like techniques, enables the production of reduced form-factor cameramodules for optical devices. However, suppressing the Fresnel reflection of wafer-level microlensesis a major challenge. Moth-eye nanostructures not only satisfy the antireflection requirementof microlens arrays, but also overcome the problem of coating fracture. This novel fabricationprocess, based on a precision wafer-level microlens array mold, is designed to meet the demandfor small form factors, high resolution, and cost effectiveness. In this study, three different kinds ofaluminum material, namely 6061-T6 aluminum alloy, high-purity polycrystalline aluminum, and purenanocrystalline aluminum were used to fabricate microlens array molds with uniform nanostructures.Of these three materials, the pure nanocrystalline aluminum microlens array mold exhibited auniform nanostructure and met the optical requirements. This study lays a solid foundation for theindustrial acceptation of novel and functional multiscale-structure wafer-level microlens arrays andprovides a practical method for the low-cost manufacture of large, high-quality wafer-level molds.


2011 ◽  
Vol 328-330 ◽  
pp. 1663-1666
Author(s):  
Qing Chen Kong ◽  
Guang Can Zhang ◽  
Yong Xin Li

This paper introduces a design of ASIC with the advantages of high performance, low power, low cost and short development cycle, which is especially suitable for the middle and small scale production of complicated large programmable ASIC. Through introducing the performance and latest development of HardCopy series devices and Stratix FPGA series devices, and based on the development platform of Quartus II and Nios II system, this paper analyzes the complete development process of Stratix FPGA and HardCopy ASIC based on SOPC. This paper concludes the seamless transplant from Stratix FPGA to HardCopy ASIC based on the SOPC with IP multiplexing, which is the most promising development direction of producing large programmable ASIC with high performance and low cost in the future.


Author(s):  
Lunyu Ma ◽  
Qi Zhu ◽  
Suresh K. Sitaraman

The integrated circuit (IC) fabrication technology continues to push the limits of microelectronics packaging technologies. Today millions of transistors can be fabricated in a chip of about 1 cm × 1 cm in size, and the required I/O density is about 1600/cm2. Although tremendous advances have been made in die to substrate interconnect technologies as well as substrate/PWB technologies, these advances have not kept pace with advances in semiconductor technology, and therefore, continue to be a bottleneck for further advances in semiconductor technologies. In addition to fabrication constraints, low cost and reliability are other requirements that affect interconnect development. Wafer-level Packaging (WLP) is an effective solution to address some of these issues. A compliant interconnect, called “J-Spring”, has been proposed and developed at Georgia Institute of Technology. Although based on the same concept of inherent stress-gradient used in the linear spring, the J-Spring will provide greater in-plane compliance. These compliant interconnects can be fabricated in batch at wafer level and the pitch can be as low as 30 μm. The fine pitch can meet and exceed the requirements of International Technology Roadmap for Semiconductor (ITRS) for 2011 [ITRS, 2001] and beyond. J-Springs with different radius, angle, width, and release length have been fabricated on a test wafer. Numerical model has been created to determine the release height based on J-Spring geometry and stress gradients. Also, the compliance of J-Spring has been determined in three orthogonal directions using parametric numerical models. The compliance of J-Spring is compared with the compliance of the linear spring. The proposed compliant interconnects can accommodate the differential displacement due to CTE mismatch between the die and the substrate. In addition, to their mechanical characteristics, their electrical characteristics have been studied as well. The electrical characteristics are dependent on the geometry, dimensions and the materials used.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Peisheng Liu ◽  
Jinlan Wang ◽  
Liangyu Tong ◽  
Yujuan Tao

Fast development of wafer level packaging (WLP) in recent years is mainly owing to the advances in integrated circuit fabrication process and the market demands for devices with high electrical performance, small form factor, low cost etc. This paper reviews the advances of WLP technology in recent years. An overall introduction to WLP is presented in the first part. The fabrication processes of WLP and redistribution technology are introduced in the second part. Reliability problems of WLPs, such as the strength of solder joints and reliability problems concerning fan-out WLPs are introduced in the third part. Typical applications of WLP technologies are discussed in the last part, which include the application of fan-out WLP, 3D packaging integrating with WLP technologies and its application in microelectromechanical systems (MEMS).


2011 ◽  
Vol 2011 (1) ◽  
pp. 001067-001073
Author(s):  
Jiajie Tang ◽  
Le Luo

A new high-density wafer-level integration of a GaAs based monolithic microwave integrated circuit (MMIC) chip and a microwave integrated passive device (IPD) is presented. This integration technology, an important and IC-compatible option for system-in-package (SiP), utilizes bulk Si fabrication and film deposition based multichip module (MCM-D) process. MMIC is entirely embedded into the silicon wafer while IPDs are integrated on the dielectric layers simultaneously with the metal/BCB multilayer interconnection. Key fabrication processes and crucial technologies are described in detail. Normal silicon wafer is selected as substrate because of its mature processing technology, low cost, good thermal dissipation as well as its thermal expansion matching with GaAs. To obtain excellent microwave performances and good planarization, thick photosensitive BCB of 25um/layer is adopted as dielectric and thus the use of tapered via that is hollow inside or filled by BCB is a cost-effective way to accomplish inter-layer connection instead of Au bump bonding or column used in dry-etch BCB process. Further promotions on microwave performances are achieved by the shielding effect through ground layer coverage on silicon surface and the application of microstrip lines. Several experiment results such as dc inter-layer connection resistance and thermal resistance measurements are complemented to investigate the characteristic of the whole package. The Microwave properties of the integration sample are measured by transmission performance test from 15GHz to 30GHz. The measurement results are analyzed and discussed comparing with the theoretical or simulation results.


2020 ◽  
Vol 90 (3) ◽  
pp. 30502
Author(s):  
Alessandro Fantoni ◽  
João Costa ◽  
Paulo Lourenço ◽  
Manuela Vieira

Amorphous silicon PECVD photonic integrated devices are promising candidates for low cost sensing applications. This manuscript reports a simulation analysis about the impact on the overall efficiency caused by the lithography imperfections in the deposition process. The tolerance to the fabrication defects of a photonic sensor based on surface plasmonic resonance is analysed. The simulations are performed with FDTD and BPM algorithms. The device is a plasmonic interferometer composed by an a-Si:H waveguide covered by a thin gold layer. The sensing analysis is performed by equally splitting the input light into two arms, allowing the sensor to be calibrated by its reference arm. Two different 1 × 2 power splitter configurations are presented: a directional coupler and a multimode interference splitter. The waveguide sidewall roughness is considered as the major negative effect caused by deposition imperfections. The simulation results show that plasmonic effects can be excited in the interferometric waveguide structure, allowing a sensing device with enough sensitivity to support the functioning of a bio sensor for high throughput screening. In addition, the good tolerance to the waveguide wall roughness, points out the PECVD deposition technique as reliable method for the overall sensor system to be produced in a low-cost system. The large area deposition of photonics structures, allowed by the PECVD method, can be explored to design a multiplexed system for analysis of multiple biomarkers to further increase the tolerance to fabrication defects.


Author(s):  
José Capmany ◽  
Daniel Pérez

Programmable Integrated Photonics (PIP) is a new paradigm that aims at designing common integrated optical hardware configurations, which by suitable programming can implement a variety of functionalities that, in turn, can be exploited as basic operations in many application fields. Programmability enables by means of external control signals both chip reconfiguration for multifunction operation as well as chip stabilization against non-ideal operation due to fluctuations in environmental conditions and fabrication errors. Programming also allows activating parts of the chip, which are not essential for the implementation of a given functionality but can be of help in reducing noise levels through the diversion of undesired reflections. After some years where the Application Specific Photonic Integrated Circuit (ASPIC) paradigm has completely dominated the field of integrated optics, there is an increasing interest in PIP justified by the surge of a number of emerging applications that are and will be calling for true flexibility, reconfigurability as well as low-cost, compact and low-power consuming devices. This book aims to provide a comprehensive introduction to this emergent field covering aspects that range from the basic aspects of technologies and building photonic component blocks to the design alternatives and principles of complex programmable photonics circuits, their limiting factors, techniques for characterization and performance monitoring/control and their salient applications both in the classical as well as in the quantum information fields. The book concentrates and focuses mainly on the distinctive features of programmable photonics as compared to more traditional ASPIC approaches.


Sign in / Sign up

Export Citation Format

Share Document