Coordinated Control of Traffic Lights on the Main Road with Intelligent Traffic Management

Author(s):  
Sergey Lyapin ◽  
Dmitry Kadasev ◽  
Nikita Voronin
2019 ◽  
Vol 2 (5) ◽  
Author(s):  
Ji-hua Hu ◽  
Jia-xian Liang

Interstation travel speed is an important indicator of the running state of hybrid Bus Rapid Transit and passenger experience. Due to the influence of road traffic, traffic lights and other factors, the interstation travel speeds are often some kind of multi-peak and it is difficult to use a single distribution to model them. In this paper, a Gaussian mixture model charactizing the interstation travel speed of hybrid BRT under a Bayesian framework is established. The parameters of the model are inferred using the Reversible-Jump Markov Chain Monte Carlo approach (RJMCMC), including the number of model components and the weight, mean and variance of each component. Then the model is applied to Guangzhou BRT, a kind of hybrid BRT. From the results, it can be observed that the model can very effectively describe the heterogeneous speed data among different inter-stations, and provide richer information usually not available from the traditional models, and the model also produces an excellent fit to each multimodal speed distribution curve of the inter-stations. The causes of different speed distribution can be identified through investigating the Internet map of GBRT, they are big road traffic and long traffic lights respectively, which always contribute to a main road crossing. So, the BRT lane should be elevated through the main road to decrease the complexity of the running state.


2020 ◽  
Vol 8 (6) ◽  
pp. 3228-3231

Intelligent Transport System (ITS) is blooming worldwide. The Traditional Traffic management system is a tedious process and it requires huge man power, to overcome this we have proposed an automatic Traffic monitoring system that has effective fleet management. The current transportation system at intersections and junctions has Traffic Lights with Fixed durations which increase the unnecessary staying time which intern harms the environment. An Adaptive traffic light control is implemented using SUMO simulator, that changes the duration of Green and Red light according to the traffic flow. This is an effective and efficient way to reduce the Traffic congestion. The traffic congestion is determined by taking the object count using deep learning approach (Convolutional Neural Network).


2020 ◽  
Vol 26 (2) ◽  
pp. 192-201
Author(s):  
Sri Redjeki Pudjaprasetya ◽  
Dear Michiko Noor

Traffic management of intersections is an important factor that can determine traffic density at the intersection, as well as its surrounding. Long traffic queues we encounter in daily life, were often caused by ineffectiveness of traffic lights management of the cross sections.In this article, an analytic study of traffic light management of a four-leg intersection, based on the kinematic LWR model, was presented. Comparison was based on observing the end of queues over three cycles of red-green lights, under the assumption of a constant traffic flux. On every leg of the intersection, the end of the queues were obtained from characteristic lines of the shock waves.From these observations, the three phase regulation was preferred over the four-phase one. Finally, a case study of Taman Sari - Baltos intersection located in Bandung City, Indonesia, was discussed. Parameter values used in these simulations were obtained from direct observation. 


2019 ◽  
Vol 8 (6) ◽  
Author(s):  
Polina A. Buyvol ◽  
Gulnara A. Yakupova ◽  
Irina V. Makarova

The transport system plays an important role in human activities and is an integral part of the successful functioning of the urbanized area. The increasing degree of provision of urban residents with transport services should at the same time keep the environment environmentally friendly and sustainable over time. The article is devoted to the issues of ensuring the rational functioning of the city transport system based on the development and implementation of an intelligent road infrastructure management system, the intellectual core of which are simulation models of problem areas of the road network. The objective of the study is the development of tools for organizing traffic in the conditions of the rapid growth of the fleet of vehicles. Research tasks were to analyze the research in the field of traffic management, to consider methods to reduce and prevent traffic jams on roads in general and in individual sections in particular. The following research methods were used: methods of system analysis, methods of modeling traffic flows, simulation, computer experiment. Achievements: the developed simulation model can be used to conduct a computer experiment in order to select the optimal parameters for the functioning of traffic lights on a specific section of the road network of the city of Naberezhnye Chelny


Author(s):  
Norlezah Hashim ◽  
Fakrulradzi Idris ◽  
Ahmad Fauzan Kadmin ◽  
Siti Suhaila Jaapar Sidek

Traffic lights play such important role in traffic management to control the traffic on the road. Situation at traffic light area is getting worse especially in the event of emergency cases. During traffic congestion, it is difficult for emergency vehicle to cross the road which involves many junctions. This situation leads to unsafe conditions which may cause accident. An Automatic Traffic Light Controller for Emergency Vehicle is designed and developed to help emergency vehicle crossing the road at traffic light junction during emergency situation. This project used Peripheral Interface Controller (PIC) to program a priority-based traffic light controller for emergency vehicle. During emergency cases, emergency vehicle like ambulance can trigger the traffic light signal to change from red to green in order to make clearance for its path automatically. Using Radio Frequency (RF) the traffic light operation will turn back to normal when the ambulance finishes crossing the road. Result showed the design is capable to response within the range of 55 meters. This project was successfully designed, implemented and tested.


2020 ◽  
Vol 4 (01) ◽  
pp. 56-65
Author(s):  
Hayati Mukti Asih

Yogyakarta has increasing trends in the number of vehicles and consequently intensifying the traffic volume and will effect to higher emission and air pollution. Traffic lights duration plays a vital role in congestion mitigation in the critical intersections of urban areas. This study has objective to minimize the number of vehicles waiting in line by developing the hybrid simulation method. First of all, the MKJI and Webster method were calculated to determine the green traffic light. Then, the simulation model was developed to evaluate the number of vehicles waiting in line according to different duration of green traffic lights from MKJI and Webster method. A case study will then be provided in Pelemgurih intersection located in Yogyakarta, Indonesia for demonstrating the applicability of the developed method. The result shows that the duration of green traffic lights calculated by Webster method provides lower number of vehicles waiting in line. It is due to the short duration of green traffic light resulted by Webster method so that the traffic light cycle becomes shorter and it effects the number of vehicles waiting in line which is lower than MKJI method. The results obtained can help the generating desired decision alternatives that will important for Department of Transportation, Indonesia to enhance the road traffic management with low number of vehicles waiting in line.


2019 ◽  
Vol 11 (14) ◽  
pp. 3882 ◽  
Author(s):  
Shenzhen Ding ◽  
Xumei Chen ◽  
Lei Yu ◽  
Xu Wang

The effective setting of offsets between intersections on arterial roads can greatly reduce the travel time of vehicles through intersections. However, coordinated control systems of urban arterial roads often do not achieve the desired effect. On the contrary, they are very likely to increase the traffic congestion on arterial roads, resulting in more delays of the platoon with more exhaust emissions, if the coordinated control system does not have effective settings. Meanwhile, taking into account increasing environmental pollution, measures are needed to solve the conflict between environmental and traffic management. Thus, in order to ensure the smooth flow of urban arterial roads while considering the environment, this paper develops a bi-objective offset optimization model, with reducing delays of the platoon on arterial roads as the primary objective, and reducing exhaust emissions as the secondary objective. The proposed bi-objective model is based on the division of platoon operating modes on arterial roads, and more pollutant types, including NOx, HC, and CO, are considered when measuring environmental impact. Further, the modified hierarchical method, combining the branch and bound approach with the introductions of a relaxation coefficient, is employed to solve the model. By introducing a relaxation coefficient, the modified hierarchical method overcomes the defects of the traditional one. Finally, Xi Dajie Road in Beijing was taken as an example. The results showed that the bi-objective offset optimization model, considering both the delays and emissions of the platoon reduced delays by up to 20% and emissions by 7% compared with the existing timing plan. If compared with the offset optimization model considering delays only, such a model increases delays no more than 3% and reduces emissions by 6%.


2013 ◽  
Vol 341-342 ◽  
pp. 732-736
Author(s):  
Yan Yan Yu ◽  
Ya Qun Huang ◽  
Lei Wang ◽  
Fu Shou Tao

The traffic signal lights control system automatically controls the statues of the intersection traffic lights and dispatch the traffic vehicles normally that traffic scheduling is an important system and it is the most basic and most important tools in city traffic management. Traffic lights control system made by single chip microcomputer technology has a single working model, low reliability, slow speed, and it can't modify or upgrade online, which is difficult to adapt to changes at different times of the traffic flow. This design of the dual mode of traffic lights control system intelligently controls each intersection traffic lights on and off time in the different period, which will improve the scheduling efficiency of road intersections. The design is based on FPGA with a digital display of traffic lights control system, compile the program design and simulation in Quartus II development environment, and ultimately download to EP2C35F672C6 chip of Altera Company. By the DE2 experiments test platform, the system has stable performance, simple operation, easy to maintenance, high reliability, strong expansibility and good refactoring.


2014 ◽  
Vol 716-717 ◽  
pp. 1562-1566
Author(s):  
Wen Liang Wu

The intelligent traffic light control is the core problem in the intelligent traffic research field, in order to solve this problem, the intelligent traffic light control system is proposed based on multi CPU. In a multi processor system, aiming at the intelligent traffic light, the reasonable control is taken. In the intelligent traffic light control system, the related principles of multi processor system design and shared memory are elaborated in detail. The BP neural network self-tuning PID control algorithm is applied in the traffic lights control process, reasonable control of traffic lights is obtained. The experiment results show that the principle is applied in the intelligent traffic light control system, it can greatly improve the control accuracy, so it can meet the actual demand of intelligent traffic management.


Sign in / Sign up

Export Citation Format

Share Document