An Automated Experimentation System for the Touch-Response Quantification of Zebrafish Larvae

Author(s):  
Yanke Wang ◽  
Daniel Marcato ◽  
Vani Tirumalasetty ◽  
Naveen Krishna Kanagaraj ◽  
Christian Pylatiuk ◽  
...  
BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yang Dong ◽  
Morgan Newman ◽  
Stephen M. Pederson ◽  
Karissa Barthelson ◽  
Nhi Hin ◽  
...  

Abstract Background Early-onset familial Alzheimer’s disease (EOfAD) is promoted by dominant mutations, enabling the study of Alzheimer’s disease (AD) pathogenic mechanisms through generation of EOfAD-like mutations in animal models. In a previous study, we generated an EOfAD-like mutation, psen1Q96_K97del, in zebrafish and performed transcriptome analysis comparing entire brains from 6-month-old wild type and heterozygous mutant fish. We identified predicted effects on mitochondrial function and endolysosomal acidification. Here we aimed to determine whether similar effects occur in 7 day post fertilization (dpf) zebrafish larvae that might be exploited in screening of chemical libraries to find ameliorative drugs. Results We generated clutches of wild type and heterozygous psen1Q96_K97del 7 dpf larvae using a paired-mating strategy to reduce extraneous genetic variation before performing a comparative transcriptome analysis. We identified 228 differentially expressed genes and performed various bioinformatics analyses to predict cellular functions. Conclusions Our analyses predicted a significant effect on oxidative phosphorylation, consistent with our earlier observations of predicted effects on ATP synthesis in adult heterozygous psen1Q96_K97del brains. The dysregulation of minichromosome maintenance protein complex (MCM) genes strongly contributed to predicted effects on DNA replication and the cell cycle and may explain earlier observations of genome instability due to PSEN1 mutation. The upregulation of crystallin gene expression may be a response to defective activity of mutant Psen1 protein in endolysosomal acidification. Genes related to extracellular matrix (ECM) were downregulated, consistent with previous studies of EOfAD mutant iPSC neurons and postmortem late onset AD brains. Also, changes in expression of genes controlling iron ion transport were observed without identifiable changes in the prevalence of transcripts containing iron responsive elements (IREs) in their 3′ untranslated regions (UTRs). These changes may, therefore, predispose to the apparent iron dyshomeostasis previously observed in 6-month-old heterozygous psen1Q96_K97del EOfAD-like mutant brains.


Toxicology ◽  
2021 ◽  
pp. 152786
Author(s):  
Bo Wang ◽  
Ling Liu ◽  
Yuejiao Li ◽  
Jiaying Zou ◽  
Dayong Li ◽  
...  
Keyword(s):  

2018 ◽  
Vol 15 (3) ◽  
pp. 1041-1052 ◽  
Author(s):  
Syam Krishna ◽  
Kiranam Chatti ◽  
Ramesh R. Galigekere

2021 ◽  
Vol 223 ◽  
pp. 112574
Author(s):  
Feng Yang ◽  
Ziyu Zhao ◽  
Haiji Zhang ◽  
Liping Zhou ◽  
Liang Tao ◽  
...  
Keyword(s):  

Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 884
Author(s):  
Hideyuki Maeda ◽  
Noritoshi Fukushima ◽  
Akihiro Hasumi

Zebrafish are easy to breed in a laboratory setting as they are extremely fertile and produce dozens of eggs per set. Because zebrafish eggs and the skin of the early-stage larvae are transparent, their embryos and the hearts and muscles of their larvae can be easily observed. Multiple rapid analyses of heart rate and behavior can be performed on these larvae simultaneously, enabling investigation of the influence of neuroactive substances on abnormal behavior, death, and associated pathogenetic mechanisms. Zebrafish larvae are becoming increasingly popular among researchers and are used in laboratories worldwide to study various vertebrate life phenomena; more experimental systems using zebrafish will undoubtedly be developed in the future. However, based on the available literature, we believe that the conceptualization of a protocol based on scientific evidence is necessary to achieve standardization. We exposed zebrafish larvae at 6–7 days post-fertilization to 50 repeated light–dark stimuli at either 15-min or 5-min intervals. We measured the traveled distance and habituation time through a video tracking apparatus. The traveled distance stabilized after the 16th repetition when the zebrafish were exposed to light–dark stimuli at 15-min intervals and after the 5th repetition when exposed at 5-min intervals. Additionally, at 15-min intervals, the peak of the traveled distance was reached within the first minute in a dark environment, whereas at 5-min intervals, it did not reach the peak even after 5 min. The traveled distance was more stable at 5-min intervals of light/dark stimuli than at 15-min intervals. Therefore, if one acclimatizes zebrafish larvae for 1 h and collects data from the 5th repetition of light/dark stimuli at intervals of 5 min in the light/dark test, a stable traveled distance result can be obtained. The establishment of this standardized method would be beneficial for investigating substances of unknown lethal concentration.


Sign in / Sign up

Export Citation Format

Share Document