Isothermal Aging Effects on the Mechanical Shock Performance of Lead-Free Solder Joints

Author(s):  
Hongtao Ma ◽  
Tae-Kyu Lee ◽  
Dong Hyun Kim ◽  
H G Park ◽  
Sang Ha Kim ◽  
...  
2013 ◽  
Vol 634-638 ◽  
pp. 2800-2803 ◽  
Author(s):  
Li Meng Yin ◽  
Yan Fei Geng ◽  
Zhang Liang Xu ◽  
Song Wei

Adopting an accurate micro-tensile method based on dynamic mechanical analyzer (DMA) instrument, the tensile strength of three kinds of copper-wire/solder/copper-wire sandwich structured microscale lead-free solder joints that underwent current stressing with a direct current density of 1.0×104 A/cm2 and loading time of 48 hours were investigated, and compared with those solder joints isothermal aged at 100 0C for 48 hours and as-reflowed condition. These three kinds of microscale columnar solder joints have different volumes, i.e., a same diameter of 300 μm but different heights of 100 μm, 200 μm and 300 μm. Experimental results show that both current stressing and isothermal aging degrades the tensile strength of microscale solder joints, and the solder joint with smaller volume obtains higher tensile strength under same test condition. In addition, current stressing induces obvious electromigration (EM) issue under high current density of 1.0×104 A/cm2, resulting in the decreasing of tensile strength and different fracture position, mode and surface morphology of microscale solder joints. The degree of strength degradation increases with the increasing of joint height when keep joint diameter constant, this is mainly due to that electromigration leads to voids form and grow at the interface of cathode, and solder joints with larger volume may contains more soldering defects as well.


Author(s):  
Abdullah Fahim ◽  
Sudan Ahmed ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

Exposure of lead free solder joints to high temperature isothermal aging conditions leads to microstructure evolution, which mainly includes coarsening of the intermetallic (IMC) phases. In our previous work, it was found that the coarsening of IMCs led to degradation of the overall mechanical properties of the SAC solder composite consisting of β-Sn matrix and IMC particles. However, it is not known whether the isothermal aging changes properties of the individual β-Sn and IMC phases, which could also be affecting to the overall degradation of properties. In this study, the aging induced variations of the mechanical properties of the β-Sn phase, and of Sn-Cu IMC particles in SAC solder joints have been explored using nanoindentation. SAC solder joints extracted from SuperBGA (SBGA) packages were aged for different time intervals (0, 1, 5, 10 days) at T = 125 °C. Nanoindentation test samples were prepared by cross sectioning the solder joints, and then molding them in epoxy and polishing them to prepare the joint surfaces for nanoindentation. Multiple β-Sn grains were identified in joints using optical polarized microscopy and IMCs were also observed. Individual β-Sn grains and IMC particles were then indented at room temperature to measure their mechanical properties (elastic modulus and hardness) and time dependent creep deformations. Properties measured at different aging time were then compared to explore aging induced degradations of the individual phases. The properties of the individual phases did not show significant degradation. Thus, IMC coarsening is the primary reason for the degradation of bulk solder joint properties, and changes of the properties of the individual phases making up the lead free solder material are negligible.


2021 ◽  
pp. 114201 ◽  
Author(s):  
Pierre Roumanille ◽  
Emna Ben Romdhane ◽  
Samuel Pin ◽  
Patrick Nguyen ◽  
Jean-Yves Delétage ◽  
...  

2012 ◽  
Vol 2012 (1) ◽  
pp. 000801-000808 ◽  
Author(s):  
Jiawei Zhang ◽  
Zhou Hai ◽  
Sivasubramanian Thirugnanasambandam ◽  
John L. Evans ◽  
M. J. Bozack

Electronics assemblies containing solder joints are often exposed to elevated temperatures for prolonged periods of time. The time-at-temperature stress impacts the overall package reliability of the assembled circuitry due to evolving materials, microstructural, and mechanical properties. It is especially important to understand the impact of isothermal aging on the long term behavior of lead (Pb)-free solder joints which operate in harsh environments. In this study, we have explored the effects of elevated temperature isothermal aging on the reliability of Sn-Ag-Cu (SAC) assemblies on board level packages. As the isothermal aging temperature increases, the Weybull characteristic lifetime for SAC 105 and 305 solder joints is drastically reduced compared to Sn-37Pb.In parallel mechanical studies on bulk solder specimens, the creep rate for SAC105, 305 rapidly increases with aging. A full test matrix with varying aging temperatures and solder alloys was considered. Package sizes ranged from 19mm, 0.8mm pitch ball grid arrays (BGAs) to 5mm, 0.4mm pitch μBGAs. The test structures were built on three different board finishes (ImSn, ImAg and SnPb). Storage condition temperatures were 25°C, 55°C, 85°C and 125°C with aging over time periods of 0, 6, and 12 months. Subsequently, the specimens were thermally cycled from −40°C to 125°C with 15 min dwell times at the high temperature. It was found that the thermal performance of lead-free fine-pitch packages significantly degrades up to 55–60% after aging at elevated temperature. The dominant failure mode can be associated with the growth of Cu6Sn5 intermetallic compounds (IMC) during the aging, particularly on the pad side.


Author(s):  
Mohammad Hasnine ◽  
Muhannad Mustafa ◽  
Jeffrey C. Suhling ◽  
Barton C. Prorok ◽  
Michael J. Bozack ◽  
...  

Author(s):  
Jing Wu ◽  
Mohammad S. Alam ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

Abstract Aging effects are common in lead free solder joints within electronic assemblies that are exposed to isothermal environments for extended periods. Such exposures lead to evolution of the solder microstructure, which results in changes in the mechanical properties and creep behavior of the solder joints. In our recent investigations, we have been utilizing Scanning Electron Microscopy (SEM) to better understand aging induced degradations. The microstructural evolutions were observed in SAC305 and SAC_Q (SAC+Bi) alloys exposed to isothermal conditions at T = 125 °C for several different regions from several different joints. The microstructures in several fixed regions of interest were recorded after predetermined time intervals of aging, which were 1 hour (up to 24 hours) and 10 hours (up to 150 hours) for the short term aging samples; and 250 hours (up to 2500 hours) for the long term aging samples. Using the recorded images and imaging processing software, the area and diameter of each IMC particle was tracked during the aging process. As expected, the quantitative analysis of the evolving SAC_Q microstructure showed that the particles coalesced during aging leading to a decrease in the number of particles. This caused an increase in the average diameter of the particles of slightly more than 100% for long term aging of 2500 hours. For SAC305, the average particle diameter was found to increase at three times the rate (increase of 200% after 2500 hours of aging). Thus, coarsening of IMC particles was greatly mitigated in the SAC_Q alloy relative to that observed in SAC305. Immediately after reflow solidification, Bismuth rich phases were present in the SAC_Q joints. During aging at T = 125 °C, the bismuth was observed to quickly go into solution both within the beta-Sn dendrites and in the intermetallic rich regions between dendrites. This resulted in solid solution strengthening of the lead free solder. It was also found that the aging-induced presence of bismuth in solution within the beta-Sn matrix provided an increased resistance to the Ostwald ripening diffusion process that coarsens the Ag3Sn IMC particles. The combination of these two effects in the SAC+Bi alloy lead to greatly improved resistance to aging induced effects relative to the SAC305 solder alloy. Finally, we have compared the time dependent evolution of microstructure with the degradation in strength during aging for of the two solder alloys, and good correlations were observed.


Sign in / Sign up

Export Citation Format

Share Document