Effect of Moisture on Thermal Properties of Halogen-Free and Halogenated Printed-Circuit-Board Laminates

2011 ◽  
Vol 11 (1) ◽  
pp. 66-75 ◽  
Author(s):  
Lili Ma ◽  
Bhanu Sood ◽  
Michael Pecht
Circuit World ◽  
2016 ◽  
Vol 42 (1) ◽  
pp. 32-36 ◽  
Author(s):  
Michal Baszynski ◽  
Edward Ramotowski ◽  
Dariusz Ostaszewski ◽  
Tomasz Klej ◽  
Mariusz Wojcik ◽  
...  

Purpose – The purpose of this paper is to evaluate thermal properties of printed circuit board (PCB) made with use of new materials and technologies. Design/methodology/approach – Four PCBs with the same layout but made with use of different materials and technologies have been investigated using thermal camera to compare their thermal properties. Findings – The results show how important the thermal properties of PCBs are for providing effective heat dissipation, and how a simple alteration to the design can help to improve the thermal performance of electronic device. Proper layout, new materials and technologies of PCB manufacturing can significantly reduce the temperature of electronic components resulting in higher reliability of electronic and power electronic devices. Originality/value – This paper shows the advantages of new technologies and materials in PCB thermal management.


2012 ◽  
Vol 134 (1) ◽  
Author(s):  
Hung-Jen Chang ◽  
Chau-Jie Zhan ◽  
Tao-Chih Chang ◽  
Jung-Hua Chou

In this study, a lead-free dummy plastic ball grid array component with daisy-chains and Sn4.0Ag0.5Cu Pb-free solder balls was assembled on an halogen-free high density interconnection printed circuit board (PCB) by using Sn1.0Ag0.5Cu solder paste on the Cu pad surfaces of either organic solderable preservative (OSP) or electroless nickel immersion gold (ENIG). The assembly was tested for the effect of the formation extent of Ag3Sn intermetallic compound. Afterward a board-level pulse-controlled drop test was conducted on the as-reflowed assemblies according to the JESD22-B110 and JESD22-B111 standards, the impact performance of various surface finished halogen-free printed circuit board assembly was evaluated. The test results showed that most of the fractures occurred around the pad on the test board first. Then cracks propagated across the outer build-up layer. Finally, the inner copper trace was fractured due to the propagated cracks, resulting in the failure of the PCB side. Interfacial stresses numerically obtained by the transient stress responses supported the test observation as the simulated initial crack position was the same as that observed.


Author(s):  
Todd Embree ◽  
Deassy Novita ◽  
Gary Long ◽  
Satish Parupalli

The continual drive toward smaller second level interconnect dimensions, along with the introduction of Halogen-Free circuit board materials and increased process temperatures of Lead-Free solders, have all contributed to a more frequent occurrence of Pad Crater damage in circuit board materials during manufacturing and test processes. This paper addresses the methodology and test data of some common industry methods used to evaluate Pad Crater strength in circuit board materials. Pad Crater test data is highly sensitive to sample design; as a result a discussion of sample design criteria is also included.


1987 ◽  
Vol 12 (3) ◽  
pp. 167-186 ◽  
Author(s):  
E. H.L.J. Dekker ◽  
C. J.M. Lasance

The thermal properties of electronic components partly determine the reliability of electronic equipment. For electrolytic capacitors, they also set the limits for the ripple current and voltage values.This article first discusses the voltage limits under various conditions of temperature, frequency and polarity. Then the connection of ripple current to these parameters and to the capacitor's resistance is treated.An extensive analysis is made of the influence of heat conduction in the capacitor and the printed-circuit board, for metal-cased as well as for epoxy-coated pearl types. The study pays particular attention to solid aluminium capacitors containing a manganese dioxide semiconductor. They have some extraordinary properties: a temperature range of at least – 80 to + 175℃, and an appreciable reverse voltage potential.These can be fully employed to improve the ripple-current specification.


Author(s):  
John F. Maddox ◽  
Roy W. Knight ◽  
Sushil H. Bhavnani

The thermal performance of an electronic device is heavily dependent on the properties of the printed circuit board (PCB) to which it is attached. However, even small variations in the process used to fabricate a PCB can have drastic effects on its thermal properties. Therefore, it is necessary to experimentally verify that each stage in the manufacturing process is producing the desired result. Steady state thermal resistance measurements, taken with a comparative cut bar apparatus based on ASTM D 5470-06, were used to compare PCBs manufactured from the same design by different vendors and the effects of vias filled with epoxy versus unfilled vias on the thermal resistance of a PCB. It was found that the thermal resistance of the PCBs varied by as much as 30% between vendors and that the PCBs with epoxy filled vias had a higher thermal resistance than those with unfilled vias, possibly due to the order in which the manufacturing steps were taken.


2000 ◽  
Vol 2000 (0) ◽  
pp. 183-184
Author(s):  
Hideto SUZUKI ◽  
Masashi NAKAMURA ◽  
Toshio ISHIKAWA ◽  
Tetsuo MATSUMOTO ◽  
Tomonari OTSUKI ◽  
...  

2019 ◽  
Vol 37 (6) ◽  
pp. 569-577 ◽  
Author(s):  
Rajesha K Das ◽  
Omdeo K Gohatre ◽  
Manoranjan Biswal ◽  
Smita Mohanty ◽  
SK Nayak

Extreme complexity in the range of metallic and non-metallic parts present in waste printed circuit boards leads to incineration for collecting valuable metals. The non-metallic parts of the printed circuit board can be used effectively without affecting the environment. In this study, the non-metallic parts of the printed circuit board, which is made up by cross-linked resin and fibre, was used as a filler in recycled plasticised polyvinyl chloride collected from waste wires and cables. The properties of the plasticised polyvinyl chloride matrix and plasticised polyvinyl chloride–non-metallic parts of printed circuit board composite were compared with each other by means of mechanical properties and thermal properties. Both mechanical and thermal properties results indicated that incorporation of non-metallic parts of printed circuit board significantly improved the hardness, stiffness, abrasion resistance and thermal stability of plasticised polyvinyl chloride–non-metallic parts of printed circuit board composite; however, the tensile strength of the composite material is not improved because of poor adhesion between the plasticised polyvinyl chloride matrix and non-metallic parts of printed circuit board filler. The poor chemical interaction is also observed from Fourier transform infrared spectroscopy results. This plasticised polyvinyl chloride–non-metallic parts of printed circuit board composite can reduce the leaching of a hazardous element from the printed circuit board with effective utilisation of plastics fraction from waste wires and cables.


Sign in / Sign up

Export Citation Format

Share Document