Dimensionality Reduction of Hyperspectral Data via Spectral Feature Extraction

2009 ◽  
Vol 47 (7) ◽  
pp. 2091-2105 ◽  
Author(s):  
B. Mojaradi ◽  
H. Abrishami-Moghaddam ◽  
M.J.V. Zoej ◽  
R.P.W. Duin
2019 ◽  
Vol 11 (2) ◽  
pp. 136 ◽  
Author(s):  
Yuliang Wang ◽  
Huiyi Su ◽  
Mingshi Li

Hyperspectral images (HSIs) provide unique capabilities for urban impervious surfaces (UIS) extraction. This paper proposes a multi-feature extraction model (MFEM) for UIS detection from HSIs. The model is based on a nonlinear dimensionality reduction technique, t-distributed stochastic neighbor embedding (t-SNE), and the deep learning method convolutional deep belief networks (CDBNs). We improved the two methods to create a novel MFEM consisting of improved t-SNE, deep compression CDBNs (d-CDBNs), and a logistic regression classifier. The improved t-SNE method provides dimensionality reduction and spectral feature extraction from the original HSIs and the d-CDBNs algorithm extracts spatial feature and edges using the reduced dimensional datasets. Finally, the extracted features are combined into multi-feature for the impervious surface detection using the logistic regression classifier. After comparing with the commonly used methods, the current experimental results demonstrate that the proposed MFEM model provides better performance for UIS extraction and detection from HSIs.


2021 ◽  
Vol 13 (18) ◽  
pp. 3649
Author(s):  
Giorgio Morales ◽  
John W. Sheppard ◽  
Riley D. Logan ◽  
Joseph A. Shaw

Hyperspectral imaging systems are becoming widely used due to their increasing accessibility and their ability to provide detailed spectral responses based on hundreds of spectral bands. However, the resulting hyperspectral images (HSIs) come at the cost of increased storage requirements, increased computational time to process, and highly redundant data. Thus, dimensionality reduction techniques are necessary to decrease the number of spectral bands while retaining the most useful information. Our contribution is two-fold: First, we propose a filter-based method called interband redundancy analysis (IBRA) based on a collinearity analysis between a band and its neighbors. This analysis helps to remove redundant bands and dramatically reduces the search space. Second, we apply a wrapper-based approach called greedy spectral selection (GSS) to the results of IBRA to select bands based on their information entropy values and train a compact convolutional neural network to evaluate the performance of the current selection. We also propose a feature extraction framework that consists of two main steps: first, it reduces the total number of bands using IBRA; then, it can use any feature extraction method to obtain the desired number of feature channels. We present classification results obtained from our methods and compare them to other dimensionality reduction methods on three hyperspectral image datasets. Additionally, we used the original hyperspectral data cube to simulate the process of using actual filters in a multispectral imager.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2787 ◽  
Author(s):  
Sandra Lorenz ◽  
Peter Seidel ◽  
Pedram Ghamisi ◽  
Robert Zimmermann ◽  
Laura Tusa ◽  
...  

Rapid, efficient and reproducible drillcore logging is fundamental in mineral exploration. Drillcore mapping has evolved rapidly in the recent decade, especially with the advances in hyperspectral spectral imaging. A wide range of imaging sensors is now available, providing rapidly increasing spectral as well as spatial resolution and coverage. However, the fusion of data acquired with multiple sensors is challenging and usually not conducted operationally. We propose an innovative solution based on the recent developments made in machine learning to integrate such multi-sensor datasets. Image feature extraction using orthogonal total variation component analysis enables a strong reduction in dimensionality and memory size of each input dataset, while maintaining the majority of its spatial and spectral information. This is in particular advantageous for sensors with very high spatial and/or spectral resolution, which are otherwise difficult to jointly process due to their large data memory requirements during classification. The extracted features are not only bound to absorption features but recognize specific and relevant spatial or spectral patterns. We exemplify the workflow with data acquired with five commercially available hyperspectral sensors and a pair of RGB cameras. The robust and efficient spectral-spatial procedure is evaluated on a representative set of geological samples. We validate the process with independent and detailed mineralogical and spectral data. The suggested workflow provides a versatile solution for the integration of multi-source hyperspectral data in a diversity of geological applications. In this study, we show a straight-forward integration of visible/near-infrared (VNIR), short-wave infrared (SWIR) and long-wave infrared (LWIR) data for sensors with highly different spatial and spectral resolution that greatly improves drillcore mapping.


2020 ◽  
Vol 12 (23) ◽  
pp. 3967
Author(s):  
Zhen Li ◽  
Baojun Zhao ◽  
Wenzheng Wang

Extracting diverse spectral features from hyperspectral images has become a hot topic in recent years. However, these models are time consuming for training and test and suffer from a poor discriminative ability, resulting in low classification accuracy. In this paper, we design an effective feature extracting framework for the spectra of hyperspectral data. We construct a structured dictionary to encode spectral information and apply learning machine to map coding coefficients. To reduce training and testing time, the sparsity constraint is replaced by a block-diagonal constraint to accelerate the iteration, and an efficient extreme learning machine is employed to fit the spectral characteristics. To optimize the discriminative ability of our model, we first add spectral convolution to extract abundant spectral information. Then, we design shared constraints for subdictionaries so that the common features of subdictionaries can be expressed more effectively, and the discriminative and reconstructive ability of dictionary will be improved. The experimental results on diverse databases show that the proposed feature extraction framework can not only greatly reduce the training and testing time, but also lead to very competitive accuracy performance compared with deep learning models.


Author(s):  
Wafa Fatima ◽  
Iqra Ejaz

Hyperspectral image (HSI) classification is a mechanism of analyzing differentiated land cover in remotely sensed hyperspectral images. In the last two decades, a number of different types of classification algorithms have been proposed for classifying hyperspectral data. These algorithms include supervised as well as unsupervised methods. Each of these algorithms has its own limitations. In this research, three different types of unsupervised classification methods are used to classify different datasets i-e Pavia Center, Pavia University, Cuprite, Moffett Field. The main objective is to assess the performance of all three classifiers K-Means, Spectral Matching, and Abundance Mapping, and observing their applicability on different datasets. This research also includes spectral feature extraction for hyperspectral datasets.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Federico Calesella ◽  
Alberto Testolin ◽  
Michele De Filippo De Grazia ◽  
Marco Zorzi

AbstractMultivariate prediction of human behavior from resting state data is gaining increasing popularity in the neuroimaging community, with far-reaching translational implications in neurology and psychiatry. However, the high dimensionality of neuroimaging data increases the risk of overfitting, calling for the use of dimensionality reduction methods to build robust predictive models. In this work, we assess the ability of four well-known dimensionality reduction techniques to extract relevant features from resting state functional connectivity matrices of stroke patients, which are then used to build a predictive model of the associated deficits based on cross-validated regularized regression. In particular, we investigated the prediction ability over different neuropsychological scores referring to language, verbal memory, and spatial memory domains. Principal Component Analysis (PCA) and Independent Component Analysis (ICA) were the two best methods at extracting representative features, followed by Dictionary Learning (DL) and Non-Negative Matrix Factorization (NNMF). Consistent with these results, features extracted by PCA and ICA were found to be the best predictors of the neuropsychological scores across all the considered cognitive domains. For each feature extraction method, we also examined the impact of the regularization method, model complexity (in terms of number of features that entered in the model) and quality of the maps that display predictive edges in the resting state networks. We conclude that PCA-based models, especially when combined with L1 (LASSO) regularization, provide optimal balance between prediction accuracy, model complexity, and interpretability.


2021 ◽  
Vol 13 (8) ◽  
pp. 1602
Author(s):  
Qiaoqiao Sun ◽  
Xuefeng Liu ◽  
Salah Bourennane

Deep learning models have strong abilities in learning features and they have been successfully applied in hyperspectral images (HSIs). However, the training of most deep learning models requires labeled samples and the collection of labeled samples are labor-consuming in HSI. In addition, single-level features from a single layer are usually considered, which may result in the loss of some important information. Using multiple networks to obtain multi-level features is a solution, but at the cost of longer training time and computational complexity. To solve these problems, a novel unsupervised multi-level feature extraction framework that is based on a three dimensional convolutional autoencoder (3D-CAE) is proposed in this paper. The designed 3D-CAE is stacked by fully 3D convolutional layers and 3D deconvolutional layers, which allows for the spectral-spatial information of targets to be mined simultaneously. Besides, the 3D-CAE can be trained in an unsupervised way without involving labeled samples. Moreover, the multi-level features are directly obtained from the encoded layers with different scales and resolutions, which is more efficient than using multiple networks to get them. The effectiveness of the proposed multi-level features is verified on two hyperspectral data sets. The results demonstrate that the proposed method has great promise in unsupervised feature learning and can help us to further improve the hyperspectral classification when compared with single-level features.


Sign in / Sign up

Export Citation Format

Share Document