High Gain and High Bandwidth Fully Differential Difference Amplifier as Current Sense Amplifier

2021 ◽  
Vol 70 ◽  
pp. 1-11
Author(s):  
Christian D. Matthus ◽  
Simon Buhr ◽  
Martin KreiBig ◽  
Frank Ellinger
2013 ◽  
Vol 6 (2) ◽  
pp. 109-113 ◽  
Author(s):  
Andrea Malignaggi ◽  
Amin Hamidian ◽  
Georg Boeck

The present paper presents a fully differential 60 GHz four stages low-noise amplifier for wireless applications. The amplifier has been optimized for low-noise, high-gain, and low-power consumption, and implemented in a 90 nm low-power CMOS technology. Matching and common-mode rejection networks have been realized using shielded coplanar transmission lines. The amplifier achieves a peak small-signal gain of 21.3 dB and an average noise figure of 5.4 dB along with power consumption of 30 mW and occupying only 0.38 mm2pads included. The detailed design procedure and the achieved measurement results are presented in this work.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2680
Author(s):  
Anoir Bouchami ◽  
Mohannad Y. Elsayed ◽  
Frederic Nabki

This paper presents a microelectromechanical system (MEMS)-based oscillator based on a Lamé-mode capacitive micromachined resonator and a fully differential high-gain transimpedance amplifier (TIA). The proposed TIA is designed using TSMC 65 nm CMOS technology and consumes only 0.9 mA from a 1-V supply. The measured mid-band transimpedance gain is 98 dB Ω and the TIA features an adjustable bandwidth with a maximum bandwidth of 142 MHz for a parasitic capacitance C P of 4 pF. The measured input-referred current noise of the TIA at mid-band is below 15 pA/ Hz . The TIA is connected to a Lamé-mode resonator, and the oscillator performance in terms of phase noise and frequency stability is presented. The measured phase noise under vacuum is −120 dBc/Hz at a 1-kHz offset, while the phase noise floor reaches −127 dBc/Hz. The measured short-term stability of the MEMS-based oscillator is ±0.25 ppm.


2021 ◽  
Vol 11 (14) ◽  
pp. 6267
Author(s):  
Tiago Varum ◽  
João Caiado ◽  
João N. Matos

Modern communication systems require high bandwidth to meet the needs of the huge number of sensors and the growing amount of data consumed, and an exponential growth is expected in the future with the integration of internet of things networks. Spectrum regions in the millimeter waves have aroused new interests, mainly because of the contiguous bands available to meet these needs. In return, and to combat the high losses of propagation in these frequencies, higher gain antennas are needed. This paper describes the use of a logarithmic architecture in the design of microstrip antenna arrays, creating structures with high gain and ultra-wide bandwidth. Three different solutions are presented with five, seven, and nine elements, reaching about 25%, 30%, and 44% of bandwidth, achieving ultra-wideband behavior, efficient and with a compact structure operating at frequencies in around 28 GHz.


2010 ◽  
Vol 97-101 ◽  
pp. 3765-3768
Author(s):  
Shih Han Lin ◽  
Shu Jung Chen ◽  
Chih Hsiung Shen

A new modified CMOS buffer amplifier with rail-to-rail input and output range is proposed by TSMC 0.35μm 2P4M process at 3.3V supply. The technique adds dummy pairs to sense the common mode range of the input differential pair and adjusts the output current accordingly. The amplifier provides high gain for a wider range of output voltages. Design considerations for reducing the impact of the additional circuitry on the core are provided. The technique described can be adapted for use with traditional fully-differential rail-to-rail amplifiers, which performs 86.9dB ~92dB dc gain, 15 MHz unit-gain bandwidth, high driving ability with high slew rate under a 100pF capacitance and a 3kΩ series resistance loading. The simulation results indicate that the settling times of rising and falling edge are within 3.5μs. It is effective for a high resolution and high speed LCD driver.


Sign in / Sign up

Export Citation Format

Share Document