DroidCollector: A High Performance Framework for High Quality Android Traffic Collection

Author(s):  
Dong Cao ◽  
Shanshan Wang ◽  
Qun Li ◽  
Zhenxiang Cheny ◽  
Qiben Yan ◽  
...  
Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 235
Author(s):  
Shuqi Zhao ◽  
Tongtong Yu ◽  
Ziming Wang ◽  
Shilei Wang ◽  
Limei Wei ◽  
...  

Two-dimensional (2D) materials driven by their unique electronic and optoelectronic properties have opened up possibilities for their various applications. The large and high-quality single crystals are essential to fabricate high-performance 2D devices for practical applications. Herein, IV-V 2D GeP single crystals with high-quality and large size of 20 × 15 × 5 mm3 were successfully grown by the Bi flux growth method. The crystalline quality of GeP was confirmed by high-resolution X-ray diffraction (HRXRD), Laue diffraction, electron probe microanalysis (EPMA) and Raman spectroscopy. Additionally, intrinsic anisotropic optical properties were investigated by angle-resolved polarized Raman spectroscopy (ARPRS) and transmission spectra in detail. Furthermore, we fabricated high-performance photodetectors based on GeP, presenting a relatively large photocurrent over 3 mA. More generally, our results will significantly contribute the GeP crystal to the wide optoelectronic applications.


2021 ◽  
Author(s):  
Lixiang Han ◽  
Mengmeng Yang ◽  
Peiting Wen ◽  
Wei Gao ◽  
nengjie huo ◽  
...  

One dimensional (1D)-two dimensional (2D) van der Waals (vdWs) mixed-dimensional heterostructures with advantages of atomically sharp interface, high quality and good compatibility have attracted tremendous attention in recent years. The...


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 229
Author(s):  
Roberto Bergamaschini ◽  
Elisa Vitiello

The quest for high-performance and scalable devices required for next-generation semiconductor applications inevitably passes through the fabrication of high-quality materials and complex designs [...]


2015 ◽  
Vol 3 (38) ◽  
pp. 19294-19298 ◽  
Author(s):  
Xichang Bao ◽  
Qianqian Zhu ◽  
Meng Qiu ◽  
Ailing Yang ◽  
Yujin Wang ◽  
...  

High-quality CH3NH3PbI3 perovskite films were directly prepared on simple treated ITO glass in air under a relative humidity of lower than 30%.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3398
Author(s):  
Yi Long ◽  
Kun Liu ◽  
Yongli Zhang ◽  
Wenzhe Li

Inorganic cesium lead halide perovskites, as alternative light absorbers for organic–inorganic hybrid perovskite solar cells, have attracted more and more attention due to their superb thermal stability for photovoltaic applications. However, the humid air instability of CsPbI2Br perovskite solar cells (PSCs) hinders their further development. The optoelectronic properties of CsPbI2Br films are closely related to the quality of films, so preparing high-quality perovskite films is crucial for fabricating high-performance PSCs. For the first time, we demonstrate that the regulation of ambient temperature of the dry air in the glovebox is able to control the growth of CsPbI2Br crystals and further optimize the morphology of CsPbI2Br film. Through controlling the ambient air temperature assisted crystallization, high-quality CsPbI2Br films are obtained, with advantages such as larger crystalline grains, negligible crystal boundaries, absence of pinholes, lower defect density, and faster carrier mobility. Accordingly, the PSCs based on as-prepared CsPbI2Br film achieve a power conversion efficiency of 15.5% (the maximum stabilized power output of 15.02%). Moreover, the optimized CsPbI2Br films show excellent robustness against moisture and oxygen and maintain the photovoltaic dark phase after 3 h aging in an air atmosphere at room temperature and 35% relative humidity (R.H.). In comparison, the pristine films are completely converted to the yellow phase in 1.5 h.


2013 ◽  
Vol 368-370 ◽  
pp. 1112-1117
Author(s):  
Jin Hui Li ◽  
Liu Qing Tu ◽  
Ke Xin Liu ◽  
Yun Pang Jiao ◽  
Ming Qing Qin

In order to solve the environment pollution of limestone powder during production of limestone manufactured sand and gravel and problem of lack of high quality fly ash or slag powder in ocean engineering, ultra-fine limestone powder was selected for preparation of green high-performance marine concrete containing fly ash and limestone powder and that containing slag powder and limestone powder for tests on workability, mechanical performance, thermal performance, shrinkage, and resistance to cracking and chloride ion permeability. And comparison was made between such green high-performance concrete and conventional marine concrete containing fly ash and slag powder. Moreover, the mechanism of green high-performance marine concrete was preliminary studied. Results showed that ultra-fine limestone powder with average particle size around 10μm had significant water reducing function and could improve early strength of concrete. C50 high-performance marine concrete prepared with 30% fly ash and 20% limestone powder or with 30% slag powder and 30% limestone powder required water less than 130kg/m3, and showed excellent workability with 28d compressive strength above 60MPa, 56d dry shrinkage rate below 300με, cracking resistance of grade V, 56d chloride ion diffusion coefficient not exceeding 2.5×10-12m2/s. Mechanical performance and resistance to chloride ion permeability of limestone powder marine concrete were quite equivalent to those of conventional marine concrete. But it had better workability, volume stability and cracking resistance. Moreover, it can serve as a solution to the lack of high quality fly ash and slag powder.


2021 ◽  
Vol 20 (5s) ◽  
pp. 1-25
Author(s):  
Michael Canesche ◽  
Westerley Carvalho ◽  
Lucas Reis ◽  
Matheus Oliveira ◽  
Salles Magalhães ◽  
...  

Coarse-grained reconfigurable architecture (CGRA) mapping involves three main steps: placement, routing, and timing. The mapping is an NP-complete problem, and a common strategy is to decouple this process into its independent steps. This work focuses on the placement step, and its aim is to propose a technique that is both reasonably fast and leads to high-performance solutions. Furthermore, a near-optimal placement simplifies the following routing and timing steps. Exact solutions cannot find placements in a reasonable execution time as input designs increase in size. Heuristic solutions include meta-heuristics, such as Simulated Annealing (SA) and fast and straightforward greedy heuristics based on graph traversal. However, as these approaches are probabilistic and have a large design space, it is not easy to provide both run-time efficiency and good solution quality. We propose a graph traversal heuristic that provides the best of both: high-quality placements similar to SA and the execution time of graph traversal approaches. Our placement introduces novel ideas based on “you only traverse twice” (YOTT) approach that performs a two-step graph traversal. The first traversal generates annotated data to guide the second step, which greedily performs the placement, node per node, aided by the annotated data and target architecture constraints. We introduce three new concepts to implement this technique: I/O and reconvergence annotation, degree matching, and look-ahead placement. Our analysis of this approach explores the placement execution time/quality trade-offs. We point out insights on how to analyze graph properties during dataflow mapping. Our results show that YOTT is 60.6 , 9.7 , and 2.3 faster than a high-quality SA, bounding box SA VPR, and multi-single traversal placements, respectively. Furthermore, YOTT reduces the average wire length and the maximal FIFO size (additional timing requirement on CGRAs) to avoid delay mismatches in fully pipelined architectures.


Author(s):  
Minjing Dong ◽  
Hanting Chen ◽  
Yunhe Wang ◽  
Chang Xu

Network pruning is widely applied to deep CNN models due to their heavy computation costs and achieves high performance by keeping important weights while removing the redundancy. Pruning redundant weights directly may hurt global information flow, which suggests that an efficient sparse network should take graph properties into account. Thus, instead of paying more attention to preserving important weight, we focus on the pruned architecture itself. We propose to use graph entropy as the measurement, which shows useful properties to craft high-quality neural graphs and enables us to propose efficient algorithm to construct them as the initial network architecture. Our algorithm can be easily implemented and deployed to different popular CNN models and achieve better trade-offs.


Sign in / Sign up

Export Citation Format

Share Document