Influence of stress-induced void formation on electromigration endurance in quarter-micron aluminum interconnects

Author(s):  
N. Matsunaga ◽  
H. Shibata ◽  
K. Hashimoto
1991 ◽  
Vol 238 ◽  
Author(s):  
A. S. Nandedkar ◽  
G. R. Srinivasan

ABSTRACTWe present an atomistic model to study void formation in aluminum interconnects in integrated circuit (1C) chips. Aluminum single and bicrystals were studied with various concentrations of vacancies and strain levels. It was found that either vacancies or tensile strains could lead to void formation. It will be shown that the void formation can be prevented by maintaining compressive strains in the computational cells.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2867
Author(s):  
Mohamad Kahar Ab Wahab ◽  
Halimatul Syahirah Mohamad ◽  
Elammaran Jayamani ◽  
Hanafi Ismail ◽  
Izabela Wnuk ◽  
...  

The preparation of polystyrene/thermoplastic starch (PS/TPS) blends was divided into three stages. The first stage involved the preparation of TPS from sago starch. Then, for the second stage, PS was blended with TPS to produce a TPS/PS blend. The ratios of the TPS/PS blend were 20:80, 40:60, 60:40, and 80:20. The final stage was a modification of the composition of TPS/PS blends with succinic anhydride and ascorbic acid treatment. Both untreated and treated blends were characterized by their physical, thermal, and surface morphology properties. The obtained results indicate that modified blends have better tensile strength as the adhesion between TPS and PS was improved. This can be observed from SEM micrographs, as modified blends with succinic anhydride and ascorbic acid had smaller TPS dispersion in PS/TPS blends. The micrograph showed that there was no agglomeration and void formation in the TPS/PS blending process. Furthermore, modified blends show better thermal stability, as proved by thermogravimetric analysis. Water uptake into the TPS/PS blends also decreased after the modifications, and the structural analysis showed the formation of a new peak after the modification process.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xiaoguo Wang ◽  
Jian Qin ◽  
Hiromi Nagaumi ◽  
Ruirui Wu ◽  
Qiushu Li

The hot deformation behaviors of homogenized direct-chill (DC) casting 6061 aluminum alloys and Mn/Cr-containing aluminum alloys denoted as WQ1 were studied systematically by uniaxial compression tests at various deformation temperatures and strain rates. Hot deformation behavior of WQ1 alloy was remarkably changed compared to that of 6061 alloy with the presence of α-Al(MnCr)Si dispersoids. The hyperbolic-sine constitutive equation was employed to determine the materials constants and activation energies of both studied alloys. The evolution of the activation energies of two alloys was investigated on a revised Sellars’ constitutive equation. The processing maps and activation energy maps of both alloys were also constructed to reveal deformation stable domains and optimize deformation parameters, respectively. Under the influence of α dispersoids, WQ1 alloy presented a higher activation energy, around 40 kJ/mol greater than 6061 alloy’s at the same deformation conditions. Dynamic recrystallization (DRX) is main dynamic softening mechanism in safe processing domain of 6061 alloy, while dynamic recovery (DRV) was main dynamic softening mechanism in WQ1 alloy due to pinning effect of α-Al(MnCr)Si dispersoids. α dispersoids can not only resist DRX but also increase power required for deformation of WQ1 alloy. The microstructure analysis revealed that the flow instability was attributed to the void formation and intermetallic cracking during hot deformation of both alloys.


2009 ◽  
Vol 40 (12) ◽  
pp. 2803-2811 ◽  
Author(s):  
Thomas Lillo ◽  
James Cole ◽  
Megan Frary ◽  
Scott Schlegel

2016 ◽  
Vol 6 (1) ◽  
pp. 68-73 ◽  
Author(s):  
Katharina Dressler ◽  
Martina Kratt ◽  
Philipp A. Voss ◽  
Stefanie Ebert ◽  
Axel Herguth ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1545
Author(s):  
Agata Skwarek ◽  
Olivér Krammer ◽  
Tamás Hurtony ◽  
Przemysław Ptak ◽  
Krzysztof Górecki ◽  
...  

The properties of Sn99Ag0.3Cu0.7 (SACX0307) solder alloy reinforced with ZnO nanoparticles were investigated. The primary ZnO particle sizes were 50, 100, and 200 nm. They were added to a solder paste at a ratio of 1.0 wt %. The wettability, the void formation, the mechanical strength, and the thermoelectric parameters of the composite solder alloys/joints were investigated. Furthermore, microstructural evaluations were performed using scanning electron and ion microscopy. ZnO nanoparticles decreased the composite solder alloys’ wettability, which yielded increased void formation. Nonetheless, the shear strength and the thermoelectric parameters of the composite solder alloy were the same as those of the SACX0307 reference. This could be explained by the refinement effects of ZnO ceramics both on the Sn grains and on the Ag3Sn and Cu6Sn5 intermetallic grains. This could compensate for the adverse impact of lower wettability. After improving the wettability, using more active fluxes, ZnO composite solder alloys are promising for high-power applications.


1989 ◽  
Vol 36 (6) ◽  
pp. 1050-1055 ◽  
Author(s):  
K. Hinode ◽  
I. Asano ◽  
Y. Homma

Sign in / Sign up

Export Citation Format

Share Document