Trapped on the Roof of the World: Taxonomic diversity and evolutionary patterns of Tibetan Plateau endemic freshwater snails (Gastropoda: Lymnaeidae: Tibetoradix )

2021 ◽  
Author(s):  
Maxim V. VINARSKI ◽  
Parm Viktor OHEIMB ◽  
Olga V. AKSENOVA ◽  
Mikhail Yu. GOFAROV ◽  
Alexander V. KONDAKOV ◽  
...  
Diversity ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 215
Author(s):  
Carl C. Christensen ◽  
Kenneth A. Hayes ◽  
Norine W. Yeung

Freshwater systems are among the most threatened habitats in the world and the biodiversity inhabiting them is disappearing quickly. The Hawaiian Archipelago has a small but highly endemic and threatened group of freshwater snails, with eight species in three families (Neritidae, Lymnaeidae, and Cochliopidae). Anthropogenically mediated habitat modifications (i.e., changes in land and water use) and invasive species (e.g., Euglandina spp., non-native sciomyzids) are among the biggest threats to freshwater snails in Hawaii. Currently, only three species are protected either federally (U.S. Endangered Species Act; Erinna newcombi) or by Hawaii State legislation (Neritona granosa, and Neripteron vespertinum). Here, we review the taxonomic and conservation status of Hawaii’s freshwater snails and describe historical and contemporary impacts to their habitats. We conclude by recommending some basic actions that are needed immediately to conserve these species. Without a full understanding of these species’ identities, distributions, habitat requirements, and threats, many will not survive the next decade, and we will have irretrievably lost more of the unique books from the evolutionary library of life on Earth.


2022 ◽  
Vol 12 ◽  
Author(s):  
Cécile Gruet ◽  
Daniel Muller ◽  
Yvan Moënne-Loccoz

Wheat, one of the major crops in the world, has had a complex history that includes genomic hybridizations between Triticum and Aegilops species and several domestication events, which resulted in various wild and domesticated species (especially Triticum aestivum and Triticum durum), many of them still existing today. The large body of information available on wheat-microbe interactions, however, was mostly obtained without considering the importance of wheat evolutionary history and its consequences for wheat microbial ecology. This review addresses our current understanding of the microbiome of wheat root and rhizosphere in light of the information available on pre- and post-domestication wheat history, including differences between wild and domesticated wheats, ancient and modern types of cultivars as well as individual cultivars within a given wheat species. This analysis highlighted two major trends. First, most data deal with the taxonomic diversity rather than the microbial functioning of root-associated wheat microbiota, with so far a bias toward bacteria and mycorrhizal fungi that will progressively attenuate thanks to the inclusion of markers encompassing other micro-eukaryotes and archaea. Second, the comparison of wheat genotypes has mostly focused on the comparison of T. aestivum cultivars, sometimes with little consideration for their particular genetic and physiological traits. It is expected that the development of current sequencing technologies will enable to revisit the diversity of the wheat microbiome. This will provide a renewed opportunity to better understand the significance of wheat evolutionary history, and also to obtain the baseline information needed to develop microbiome-based breeding strategies for sustainable wheat farming.


Author(s):  
Cheryl Colopy

From a remote outpost of global warming, a summons crackles over a two-way radio several times a week: . . . Kathmandu, Tsho Rolpa! Babar Mahal, Tsho Rolpa! Kathmandu, Tsho Rolpa! Babar Mahal, Tsho Rolpa! . . . In a little brick building on the lip of a frigid gray lake fifteen thousand feet above sea level, Ram Bahadur Khadka tries to rouse someone at Nepal’s Department of Hydrology and Meteorology in the Babar Mahal district of Kathmandu far below. When he finally succeeds and a voice crackles back to him, he reads off a series of measurements: lake levels, amounts of precipitation. A father and a farmer, Ram Bahadur is up here at this frigid outpost because the world is getting warmer. He and two colleagues rotate duty; usually two of them live here at any given time, in unkempt bachelor quarters near the roof of the world. Mount Everest is three valleys to the east, only about twenty miles as the crow flies. The Tibetan plateau is just over the mountains to the north. The men stay for four months at a stretch before walking down several days to reach a road and board a bus to go home and visit their families. For the past six years each has received five thousand rupees per month from the government—about $70—for his labors. The cold, murky lake some fifty yards away from the post used to be solid ice. Called Tsho Rolpa, it’s at the bottom of the Trakarding Glacier on the border between Tibet and Nepal. The Trakarding has been receding since at least 1960, leaving the lake at its foot. It’s retreating about 200 feet each year. Tsho Rolpa was once just a pond atop the glacier. Now it’s half a kilometer wide and three and a half kilometers long; upward of a hundred million cubic meters of icy water are trapped behind a heap of rock the glacier deposited as it flowed down and then retreated. The Netherlands helped Nepal carve out a trench through that heap of rock to allow some of the lake’s water to drain into the Rolwaling River.


Author(s):  
Mike Searle

The Tibetan Plateau is by far the largest region of high elevation, averaging just above 5,000 metres above sea level, and the thickest crust, between 70 and 90 kilometres thick, anywhere in the world. This huge plateau region is very flat—lying in the internally drained parts of the Chang Tang in north and central Tibet, but in parts of the externally drained eastern Tibet, three or four mountain ranges larger and higher than the Alps rise above the frozen plateau. Some of the world’s largest and longest mountain ranges border the plateau, the ‘flaming mountains’ of the Tien Shan along the north-west, the Kun Lun along the north, the Longmen Shan in the east, and of course the mighty Himalaya forming the southern border of the plateau. The great trans-Himalayan mountain ranges of the Pamir and Karakoram are geologically part of the Asian plate and western Tibet but, as we have noted before, unlike Tibet, these ranges have incredibly high relief with 7- and 8-kilometre-high mountains and deeply eroded rivers and glacial valleys. The western part of the Tibetan Plateau is the highest, driest, and wildest area of Tibet. Here there is almost no rainfall and rivers that carry run-off from the bordering mountain ranges simply evaporate into saltpans or disappear underground. Rivers draining the Kun Lun flow north into the Takla Makan Desert, forming seasonal marshlands in the wet season and a dusty desert when the rivers run dry. The discovery of fossil tropical leaves, palm tree trunks, and even bones from miniature Miocene horses suggest that the climate may have been wetter in the past, but this is also dependent on the rise of the plateau. Exactly when Tibet rose to its present elevation is a matter of great debate. Nowadays the Indian Ocean monsoon winds sweep moisture-laden air over the Indian sub-continent during the summer months (late June–September). All the moisture is dumped as the summer monsoon, the torrential rains that sweep across India from south-east to north-west.


Ecosphere ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ji Suonan ◽  
Aimée T. Classen ◽  
Nathan J. Sanders ◽  
Jin‐Sheng He

Paleobiology ◽  
1994 ◽  
Vol 20 (3) ◽  
pp. 320-344 ◽  
Author(s):  
Mike Foote

It has been argued that many clades originating in the early Paleozoic filled their design space rapidly while still at low taxonomic diversity. Standardization of morphology for analytical purposes facilitates testing of this claim. Here I document evolutionary patterns of morphological disparity in Ordovician-Devonian crinoids, using a set of 75 discrete characters covering the principal features of the crinoid stem, cup, tegmen, and arms. Disparity is measured as the average dissimilarity among species, the range of morphospace occupied, and the number of realized character-state combinations. Comparison with generic richness reveals that the full range of form was essentially attained by the early part of the Caradocian, long before the time of maximal taxonomic diversity. Despite subsequent taxonomic diversification, the variety of crinoid form did not expand appreciably; increased diversity was accommodated by the evolution of variations upon the spectrum of designs established earlier. The data discussed here do not definitively imply specific sources of constraint, but the effective stasis in disparity supports previous arguments that some morphological limits were reached early in crinoid history.


2014 ◽  
Vol 14 (12) ◽  
pp. 18255-18275 ◽  
Author(s):  
X. Xu ◽  
T. Zhao ◽  
C. Lu ◽  
Y. Guo ◽  
B. Chen ◽  
...  

Abstract. The Tibetan Plateau (TP), referred to as the "roof of the world" is also known as the "world water tower", because it contains a large amount of water resources and ceaselessly transports these waters to its surrounding areas. However, it is not clear how these waters are being supplied and replenished. In particular, how plausible hydrological cycles can be realized between tropical oceans and the TP. In order to explore the mechanism sustaining the atmospheric "water tower" over the TP, the relationship of a "heat source column" over the plateau and moist flows in the Asian summer monsoon circulation is investigated, here we show that the plateau's thermal structure leads to dynamic processes with an integration of two couples of lower convergences and upper divergences, respectively, over the plateau's southern slopes and main platform, which relay moist air in two ladders up to the plateau. Similarly to the CISK (Conditional Instability of the Second Kind) mechanism of tropical cyclones, the elevated warm-moist air, in turn, forces convective weather systems, hence building a water cycle over the plateau. An integration of mechanical and thermal TP-forcing is revealed in relation to the Asian summer monsoon circulation knitting a close tie of vapor transport from tropical oceans to the atmospheric "water tower" over the TP.


2021 ◽  
Vol 12 (3) ◽  
pp. 375-382
Author(s):  
A. V. Odintsova ◽  
O. S. Fishchuk ◽  
K. I. Scrypec ◽  
I. M. Danylyk

In this review, the scope of morphological diversity of fruits within the class Liliopsida belonging to the flora of Ukraine compared to the world flora diversity was analyzed. For the first time, the taxonomic diversity of monocot plants of the flora of Ukraine was analyzed, which includes 235 genera and about 1050 species, and the distribution of fruit types in the largest monocot families revealed. It was found that among monocot plants of the world flora, as also of the Ukrainian flora, more than 70% of generic and species diversity is taken up by the Orchidaceae, Poaceae, and Cyperaceae families having dry uniform fruits: inferior capsule (Orchidaceae) and one-seeded enveloped fruit (Poaceae and Cyperaceae). An annotated list of morphological fruit types was compiled for all 38 families of the natural and cultural flora of monocot plants of Ukraine. Among 12 families of the subclass Alismatidae, apocarpous polymerous or trimerous fruits, mostly with one-seeded fruitlets, occur in six families (Alismataceae, Butomaceae, Potamogetonaceae, Ruppiaceae, Scheuchzeriaceae, Zannichelliaceae). In 12 of 16 families of the subclass Liliidae, trimerous capsules are the most common (Agapanthaceae, Agavaceae, Alliaceae, Amaryllidaceae, Asphodelaceae, Colchicaceae, Hemerocallidacae, Hyacinthaceae, Iridaceae, Liliасеае, Melanthiaceae, Orchidaceae), while in six families berry-like fruit occurs in all members or in the single genus (Asparagaceae, Ruscaceae, Dioscoreaceae, Melanthiaceae (Paris), Liliасеае (Streptopus), Smilacaceae). Among 10 families of the subclass Commelinidae, in four families superior dry one-seeded fruits occur (Cyperaceae, Poaceae, Sparganiaceae, Typhaceae), while another four families have trimerous capsules (Cannaceae, Commelinaceae, Juncaceae, Pontederiaceae). In general, the most typical fruit on the familial taxonomical level is the capsule (17 families), berries occur in 10 families, aggregate fruits and one-seeded fruits are represented each in seven families, while the rarest fruit type is the schizocarp (Juncaginaceae). No monomerous follicles, poricide and operculate capsules, winged fruits and loments were found. The most controversial fruit types are found in two groups of families, for both of them the problem is the gynoecium type. These are families with one-seeded fruit (Аrасеае (Lemna), Cyperaceae, Hydrocharitaceae (Najas), Poaceae, Sparganiaceae, Typhaceae, Zosteraceae) and families with initial carpel fusion (Hydrocharitaceae (Stratiotes), Juncaginaceae, Melanthiaceae (Veratrum), Scheuchzeriaceae, Tofieldiaceae). As a result of our work, the key and the most relevant areas of carpological studies in Ukraine were defined, particularly, unifying the terminology, examination of the anatomical structure of the pericarp, revealing of the evolutionary and ecological aspects of fruit morphology.


Sign in / Sign up

Export Citation Format

Share Document