Exercise can restore behavioural and molecular changes of intergenerational morphine effects

2021 ◽  
Author(s):  
Mitra‐Sadat Sadat‐Shirazi ◽  
Setareh Nouri Zadeh‐Tehrani ◽  
Ardeshir Akbarabadi ◽  
Azarakhsh Mokri ◽  
Bahar Taleb Zadeh Kasgari ◽  
...  
Keyword(s):  
LWT ◽  
2021 ◽  
pp. 111815
Author(s):  
Min Zhang ◽  
Weibo Lu ◽  
Huicheng Yang ◽  
Pingan Zheng ◽  
Hujun Xie ◽  
...  

2021 ◽  
Vol 6 (2) ◽  
pp. 48
Author(s):  
Elisa Innocenzi ◽  
Ida Cariati ◽  
Emanuela De Domenico ◽  
Erika Tiberi ◽  
Giovanna D’Arcangelo ◽  
...  

Aerobic exercise (AE) is known to produce beneficial effects on brain health by improving plasticity, connectivity, and cognitive functions, but the underlying molecular mechanisms are still limited. Neurexins (Nrxns) are a family of presynaptic cell adhesion molecules that are important in synapsis formation and maturation. In vertebrates, three-neurexin genes (NRXN1, NRXN2, and NRXN3) have been identified, each encoding for α and β neurexins, from two independent promoters. Moreover, each Nrxns gene (1–3) has several alternative exons and produces many splice variants that bind to a large variety of postsynaptic ligands, playing a role in trans-synaptic specification, strength, and plasticity. In this study, we investigated the impact of a continuous progressive (CP) AE program on alternative splicing (AS) of Nrxns on two brain regions: frontal cortex (FC) and hippocampus. We showed that exercise promoted Nrxns1–3 AS at splice site 4 (SS4) both in α and β isoforms, inducing a switch from exon-excluded isoforms (SS4−) to exon-included isoforms (SS4+) in FC but not in hippocampus. Additionally, we showed that the same AE program enhanced the expression level of other genes correlated with synaptic function and plasticity only in FC. Altogether, our findings demonstrated the positive effect of CP AE on FC in inducing molecular changes underlying synaptic plasticity and suggested that FC is possibly a more sensitive structure than hippocampus to show molecular changes.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 991
Author(s):  
Fernanda Costa Brandão Berti ◽  
Sara Cristina Lobo-Alves ◽  
Camila de Freitas Oliveira-Toré ◽  
Amanda Salviano-Silva ◽  
Karen Brajão de Oliveira ◽  
...  

MicroRNAs (miRNAs) regulate gene expression by binding to complementary sequences within target mRNAs. Apart from working ‘solo’, miRNAs may interact in important molecular networks such as competing endogenous RNA (ceRNA) axes. By competing for a limited pool of miRNAs, transcripts such as long noncoding RNAs (lncRNAs) and mRNAs can regulate each other, fine-tuning gene expression. Several ceRNA networks led by different lncRNAs—described here as lncRNA-mediated ceRNAs—seem to play essential roles in cervical cancer (CC). By conducting an extensive search, we summarized networks involved in CC, highlighting the major impacts of such dynamic molecular changes over multiple cellular processes. Through the sponging of distinct miRNAs, some lncRNAs as HOTAIR, MALAT1, NEAT1, OIP5-AS1, and XIST trigger crucial molecular changes, ultimately increasing cell proliferation, migration, invasion, and inhibiting apoptosis. Likewise, several lncRNAs seem to be a sponge for important tumor-suppressive miRNAs (as miR-140-5p, miR-143-3p, miR-148a-3p, and miR-206), impairing such molecules from exerting a negative post-transcriptional regulation over target mRNAs. Curiously, some of the involved mRNAs code for important proteins such as PTEN, ROCK1, and MAPK1, known to modulate cell growth, proliferation, apoptosis, and adhesion in CC. Overall, we highlight important lncRNA-mediated functional interactions occurring in cervical cells and their closely related impact on cervical carcinogenesis.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Isabel Jiménez ◽  
Bárbara Tazón-Vega ◽  
Pau Abrisqueta ◽  
Juan C. Nieto ◽  
Sabela Bobillo ◽  
...  

Abstract Background Mechanisms driving the progression of chronic lymphocytic leukemia (CLL) from its early stages are not fully understood. The acquisition of molecular changes at the time of progression has been observed in a small fraction of patients, suggesting that CLL progression is not mainly driven by dynamic clonal evolution. In order to shed light on mechanisms that lead to CLL progression, we investigated longitudinal changes in both the genetic and immunological scenarios. Methods We performed genetic and immunological longitudinal analysis using paired primary samples from untreated CLL patients that underwent clinical progression (sampling at diagnosis and progression) and from patients with stable disease (sampling at diagnosis and at long-term asymptomatic follow-up). Results Molecular analysis showed limited and non-recurrent molecular changes at progression, indicating that clonal evolution is not the main driver of clinical progression. Our analysis of the immune kinetics found an increasingly dysfunctional CD8+ T cell compartment in progressing patients that was not observed in those patients that remained asymptomatic. Specifically, terminally exhausted effector CD8+ T cells (T-betdim/−EomeshiPD1hi) accumulated, while the the co-expression of inhibitory receptors (PD1, CD244 and CD160) increased, along with an altered gene expression profile in T cells only in those patients that progressed. In addition, malignant cells from patients at clinical progression showed enhanced capacity to induce exhaustion-related markers in CD8+ T cells ex vivo mainly through a mechanism dependent on soluble factors including IL-10. Conclusions Altogether, we demonstrate that the interaction with the immune microenvironment plays a key role in clinical progression in CLL, thereby providing a rationale for the use of early immunotherapeutic intervention.


2021 ◽  
pp. ijgc-2020-002018
Author(s):  
Rehab Al Harbi ◽  
Iain A McNeish ◽  
Mona El-Bahrawy

Sex cord stromal-tumors are rare tumors of the ovary that include numerous tumor subtypes of variable histological features and biological behavior. Surgery is the main therapeutic modality for the management of these tumors, while chemotherapy and hormonal therapy may be used in some patients with progressive and recurrent tumors. Several studies investigated molecular changes in the different tumor types. Understanding molecular changes underlying the development and progression of sex cord-stromal tumors provides valuable information for diagnostic and prognostic biomarkers and potential therapeutic targets for these tumors. In this review, we provide an update on the clinical presentation, molecular changes, and management of sex cord-stromal tumors.


Author(s):  
Christian Scifo ◽  
Angela Milasi ◽  
Andrea Guarnera ◽  
Fulvia Sinatra ◽  
Marcella Renis

Sign in / Sign up

Export Citation Format

Share Document