MicroRNA‐33b replacement effect on growth and migration inhibition in ovarian cancer cells

Author(s):  
Jin Liu ◽  
Weiming Wang ◽  
Limin Chen ◽  
Yachai Li ◽  
Shuimiao Zhao ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qingjuan Meng ◽  
Ningning Wang ◽  
Guanglan Duan

Abstract Background X inactivation-specific transcript (XIST) is the long non-coding RNA (lncRNA) related to cancer, which is involved in the development and progression of various types of tumor. However, up to now, the exact role and molecular mechanism of XIST in the progression of ovarian cancer are not clear. We studied the function of XIST in ovarian cancer cells and clinical tumor specimens. Methods RT-qPCR was performed to detect the expression levels of miR-335 and BCL2L2 in ovarian cancer cells and tissues. MTT and transwell assays were carried out to detect cell proliferation, migration, and invasion abilities. Western blot was performed to analyze the expression level of BCL2L2. The interaction between miR-335 and XIST/BCL2L2 was confirmed using a luciferase reporter assay. Results The inhibition of XIST can inhibit the proliferation invasion and migration of human ovarian cancer cells. In addition, the miR-335/BCL2L2 axis was involved in the functions of XIST in ovarian cancer cells. These results suggested that XIST could regulate tumor proliferation and invasion and migration via modulating miR-335/BCL2L2. Conclusion XIST might be a carcinogenic lncRNA in ovarian cancer by regulating miR-335, and it can serve as a therapeutic target in human ovarian cancer.



2018 ◽  
Vol 17 (2) ◽  
pp. 219
Author(s):  
Qingfu Wang ◽  
Lixin Zhu ◽  
Aiping Qin ◽  
Tiefeng Chen ◽  
Jinpen Li ◽  
...  


Author(s):  
Wenwei Xu ◽  
Roman Mezencev ◽  
Byungkyu Kim ◽  
Lijuan Wang ◽  
John McDonald ◽  
...  

Cancer cells undergo a variety of biochemical and biophysical transformations when compared to identical cells displaying a healthy phenotypic state, cancer cells show a drastic reduction of stiffness upon malignancy[1, 2] and change of stiffness of single cells can indicate the presence of disease [3–6]. Besides, metastatic cancer has a higher deformability than their benign counterparts[7, 8]. Using atomic force microscopy, we demonstrated that cancerous ovarian cells (OVCAR3, OVCAR4, HEY and HEYA8) are substantially softer than the healthy immortalized ovarian surface epithelium (IOSE) cells. In addition, within the different types of cancerous ovarian cells, increased invasiveness and migration are directly correlated with increased cell deformability. These results indicate that stiffness of individual cells can distinguish not only ovarian cancer cells from healthy cells types, but also invasive cancer types from less invasive types. Stiffness may provide an alternative and convenient biomarker to grade the metastasis potential of cancer cells.



PLoS ONE ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. e0189524 ◽  
Author(s):  
Mian M. K. Shahzad ◽  
Mildred Felder ◽  
Kai Ludwig ◽  
Hannah R. Van Galder ◽  
Matthew L. Anderson ◽  
...  


2015 ◽  
Vol 27 (1) ◽  
pp. 198 ◽  
Author(s):  
Y.-S. Kim ◽  
K.-C. Choi

The ovary is the important organ to produce oocytes. Any disorder will affect embryo production. Ovarian cancer is one of gynecologic cancers in women which can affect ovarian functions. Oestradiol (E2) may be involved in ovarian cell growth and epithelial-mesenchymal transition (EMT) for diverse functions. EMT is an important process in embryo development and tumour migration or progression. Bis-phenol A (BPA) and nonyl-phenol (NP) have an estrogenic property, which can be suspected as endocrine disrupting chemicals (EDC). In this study, it has been examined whether BPA and NP can cause EMT process and migration in BG-1 ovarian cancer cells. To confirm the effect of these EDCs, BG-1 ovarian cancer cells were cultured and treated with DMSO (0.1%), E2 (10–7 M), BPA (10–6 M) and NP (10–6 M) for 0, 6, and 24 h. The mRNAs were extracted to perform reverse-transcription (RT)-PCR and the changes in the mRNA expressions were analysed by ANOVA test. Following treatments with BPA and NP, alterations of EMT markers; that is, vimentin and E-cadherin, were examined at mRNA levels by RT-PCR. The levels of vimentin were up-regulated by E2, BPA, or NP in a time-dependent manner. In addition, transcriptional factors of EMT response, i.e. snail and slug, were enhanced by these treatments more than 2 times. BG-1 cells were exposed to these EDCs for 0, 24, and 48 h. Vimentin and snail proteins were induced by E2, BPA, or NP, while the expression of E-cadherin was decreased by them. To reveal that this EMT response is affected by oestrogen receptor (ER), the cells were treated with these EDCs in the presence of an ER antagonist, ICI 182 780 (10–6 M). Treatment with ICI 182 780 reversed EDC-induced alteration of these EMT markers, E-cadherin, vimentin, and snail. Since EMT response can cause metastasis, a scratch assay was performed to show migration caused by BPA or NP. BPA or E2 enhanced migratory capability of these BG-1 cells. Taken together, these results indicate that BPA and NP, potential EDC, may have an ability to influence ovarian cancer metastasis via regulating snail and slug genes in ER-positive ovarian cancers. In a future study, their effects in inducing EMT and migration will be tested in a xenograft mouse model.This work was supported by a grant from the Next-Generation BioGreen 21 Program (no. PJ009599), Rural Development Administration, Republic of Korea.





2013 ◽  
Vol 6 (1) ◽  
pp. 49-54 ◽  
Author(s):  
LI HU ◽  
WEI WANG ◽  
JINYANG CAI ◽  
JUN LUO ◽  
YI HUANG ◽  
...  


Author(s):  
Jinhui Liu ◽  
Yi Jiang ◽  
Yicong Wan ◽  
Shulin Zhou ◽  
Sunita Thapa ◽  
...  


2021 ◽  
Author(s):  
Qingqing Yang ◽  
Chang Duan ◽  
Haofan Wang ◽  
Dongyuan Jiang ◽  
Yaping Wang ◽  
...  

Abstract Background: PR-M refers to a novel truncated progesterone receptor located on the outer membrane of mitochondria, capable of facilitating the proliferation of leiomyoma cells and breast cancer cells, as well as inhibiting apoptosis as impacted by progesterone or progesterone agonists. However, its role in ovarian tumors has not yet been elucidated.Objective: To study the expression of PR-M in different ovarian tumor tissues and normal tissues, and the effect exerted by progesterone on the proliferation and migration of SKOV-3 cells that achieve high PR-M expression.Methods: Real- time PCR and Western blot were employed for determining PR-M levels in cell lines, non-cancer tissues and ovarian cancer tissues. By immunohistochemistry, PR-M protein expression in benign tumor, borderline tumor and epithelial carcinoma was detected, and the clinicopathological characteristics between PR-M and cancer were analyzed. Furthermore, CCK-8 and scratch test were performed to explore the proliferation and migration of SKOV-3 cells exhibiting high PR-M expression.Results: PR-M increased significantly in cancer tissues and ovarian cancer cell lines, in comparison to normal cells and non-cancer tissues. The abnormal expression showed a significant correlation with intraperitoneal metastasis, lymph node metastasis, clinically related stage and CA125 level, suggesting that high PR-M expression may affect the progression of ovarian tumors. During the cell experiment, PR-M achieved the maximum expression in SKOV-3 cells (PR-A / B(-)). As impacted by progesterone, SKOV-3 cells (PR-A / B(-)) achieved the enhanced proliferation and migration. Besides, the enhancing effect was dose and time-dependent.Conclusion: PR-M is critical to develop ovarian cancer. Progesterone may facilitate the proliferation and migration of ovarian cancer cells exhibiting high PR-M expression.



Sign in / Sign up

Export Citation Format

Share Document