scholarly journals EAO‐502/PO‐BR‐019 | Innovation with Biological Safety for handling cells and tissues in Dentistry, in the COVID19 era.

2021 ◽  
Vol 32 (S22) ◽  
pp. 82-82
Keyword(s):  
2004 ◽  
Author(s):  
D. Sassone ◽  
A. Jin ◽  
S. Kawalewsky ◽  
K. Groves

2020 ◽  
Vol 10 (1) ◽  
pp. 66-69
Author(s):  
Natalia Zhavoronkova ◽  
Vyacheslav Agafonov

The article is devoted to the study of modern theoretical and legal problems of ensuring biological security in the Arctic zone of the Russian Federation. The published Draft of Federal law No. 850485-7“On biological security of the Russian Federation”provides an opportunity to take a closer look at the problem of legal provision of biological security in relation to the most vulnerable ecosystems, and, first of all, the Arctic. The article considers the most important features and potential risks of the Arctic zone of the Russian Federation of critical importance from the point of view of biological hazards, the features (specificity) of biological safety problems from the point of view of organizational-legal features and, in particular, from the perspective of environmental law. It is proved that, given the special situation of the Arctic zone of the Russian Federation, in addition to the base Federal law“About biological safety” required a specific law on biological and ecological safety of the Arctic zone of the Russian Federation, which should be generated on a slightly different model than the draft Federal law «On biological safety”, to wear the most specific, applied nature.


Author(s):  
L.V. Kataeva ◽  
T.F. Stepanova ◽  
O.V. Posoyuznykh ◽  
V.V. Tashlanova ◽  
N.F. Karpukhina ◽  
...  

The analysis of cases of detection of bacteria of the genus Aeromonas in clinical material from various loci of patients of medical organizations was carried out. Their species diversity, isolation in monoculture and associations, resistance to antibiotics and spring-autumn rises indicate the etiological significance of these microorganisms in the infectious process. To improve the biological safety of aquatic biotopes, it is important to study their microbiocenosis, in particular, the circulation of bacteria of the genus Aeromonas, in order to obtain information on pathogenic properties, antibiotic resistance, and seasonal fluctuations. To prevent the spread of Aeromonas infections, it is necessary to carry out sanitary and bacteriological studies of water bodies, environmental objects and food products.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 731
Author(s):  
Yoshimitsu Okazaki ◽  
Shin-ichi Katsuda

We performed biological safety evaluation tests of three Ti–Zr alloys under accelerated extraction condition. We also conducted histopathological analysis of long-term implantation of pure V, Al, Ni, Zr, Nb, and Ta metals as well as Ni–Ti and high-V-containing Ti–15V–3Al–3Sn alloys in rats. The effect of the dental implant (screw) shape on morphometrical parameters was investigated using rabbits. Moreover, we examined the maximum pullout properties of grit-blasted Ti–Zr alloys after their implantation in rabbits. The biological safety evaluation tests of three Ti–Zr alloys (Ti–15Zr–4Nb, Ti–15Zr–4Nb–1Ta, and Ti–15Zr–4Nb–4Ta) showed no adverse (negative) effects of either normal or accelerated extraction. No bone was formed around the pure V and Ni implants. The Al, Zr, Nb, and Ni–Ti implants were surrounded by new bone. The new bone formed around Ti–Ni and high-V-containing Ti alloys tended to be thinner than that formed around Ti–Zr and Ti–6Al–4V alloys. The rate of bone formation on the threaded portion in the Ti–15Zr–4Nb–4Ta dental implant was the same as that on a smooth surface. The maximum pullout loads of the grit- and shot-blasted Ti–Zr alloys increased linearly with implantation period in rabbits. The pullout load of grit-blasted Ti–Zr alloy rods was higher than that of shot-blasted ones. The surface roughness (Ra) and area ratio of residual Al2O3 particles of the Ti–15Zr–4Nb alloy surface grit-blasted with Al2O3 particles were the same as those of the grit-blasted Alloclassic stem surface. It was clarified that the grit-blasted Ti–15Zr–4Nb alloy could be used for artificial hip joint stems.


2021 ◽  
pp. 107815522110235
Author(s):  
Hao ML ◽  
Wang T ◽  
Zhu JQ ◽  
Song YJ ◽  
Gong TJ ◽  
...  

Objectives The aims of the study were to evaluate the external contamination of hazardous drug vials used in Chinese hospitals and to compare environmental contamination generated by a robotic intelligent dispensing system (WEINAS) and a manual compounding procedure using a biological safety cabinet (BSC). Methods Cyclophosphamide, fluorouracil, and gemcitabine were selected as the representative hazardous drugs to monitor surface contamination of vials. In the comparative analysis of environmental contamination from manual and robotic compounding, wipe samples were taken from infusion bags, gloves, and the different locations of the BSC and the WEINAS robotic system. In this study, high-performance liquid chromatography coupled with double mass spectrometer (HPLC-MS/MS) was employed for sample analysis. Results (1) External contamination was measured on vials of all three hazardous drugs. The contamination detected on fluorouracil vials was the highest with an average amount up to 904.33 ng/vial, followed by cyclophosphamide (43.51 ng/vial), and gemcitabine (unprotected vials of 5.92 ng/vial, protected vials of 0.66 ng/vial); (2) overall, the environmental contamination induced by WEINAS robotic compounding was significantly reduced compared to that by manual compounding inside the BSC. Particularly, compared with manual compounding, the surface contamination on the infusion bags during robotic compounding was nearly nine times lower for cyclophosphamide (10.62 ng/cm2 vs 90.43 ng/cm2), two times lower for fluorouracil (3.47 vs 7.52 ng/cm2), and more than 23 times lower for gemcitabine (2.61 ng/cm2 vs 62.28 ng/cm2). Conclusions The external contamination occurred extensively on some hazardous drug vials that commonly used in Chinese hospitals. Comparison analysis for both compounding procedures revealed that robotic compounding can remarkably reduce environmental contamination.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 617
Author(s):  
Ruben Foresti ◽  
Benedetta Ghezzi ◽  
Matteo Vettori ◽  
Lorenzo Bergonzi ◽  
Silvia Attolino ◽  
...  

The production of 3D printed safety protection devices (SPD) requires particular attention to the material selection and to the evaluation of mechanical resistance, biological safety and surface roughness related to the accumulation of bacteria and viruses. We explored the possibility to adopt additive manufacturing technologies for the production of respirator masks, responding to the sudden demand of SPDs caused by the emergency scenario of the pandemic spread of SARS-COV-2. In this study, we developed different prototypes of masks, exclusively applying basic additive manufacturing technologies like fused deposition modeling (FDM) and droplet-based precision extrusion deposition (db-PED) to common food packaging materials. We analyzed the resulting mechanical characteristics, biological safety (cell adhesion and viability), surface roughness and resistance to dissolution, before and after the cleaning and disinfection phases. We showed that masks 3D printed with home-grade printing equipment have similar performances compared to the industrial-grade ones, and furthermore we obtained a perfect face fit by customizing their shape. Finally, we developed novel approaches to the additive manufacturing post-processing phases essential to assure human safety in the production of 3D printed custom medical devices.


2017 ◽  
Vol 41 (6) ◽  
pp. e12421 ◽  
Author(s):  
Huihai Yang ◽  
Lulu Wang ◽  
Hang Sun ◽  
Xiaofeng He ◽  
Jing Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document