scholarly journals The Brain Connectivity Basis of Semantic Dementia: A Selective Review

2015 ◽  
Vol 21 (10) ◽  
pp. 784-792 ◽  
Author(s):  
Qing Yang ◽  
Qi-Hao Guo ◽  
Yan-Chao Bi
2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Camille Fauchon ◽  
David Meunier ◽  
Isabelle Faillenot ◽  
Florence B Pomares ◽  
Hélène Bastuji ◽  
...  

Abstract Intracranial EEG (iEEG) studies have suggested that the conscious perception of pain builds up from successive contributions of brain networks in less than 1 s. However, the functional organization of cortico-subcortical connections at the multisecond time scale, and its accordance with iEEG models, remains unknown. Here, we used graph theory with modular analysis of fMRI data from 60 healthy participants experiencing noxious heat stimuli, of whom 36 also received audio stimulation. Brain connectivity during pain was organized in four modules matching those identified through iEEG, namely: 1) sensorimotor (SM), 2) medial fronto-cingulo-parietal (default mode-like), 3) posterior parietal-latero-frontal (central executive-like), and 4) amygdalo-hippocampal (limbic). Intrinsic overlaps existed between the pain and audio conditions in high-order areas, but also pain-specific higher small-worldness and connectivity within the sensorimotor module. Neocortical modules were interrelated via “connector hubs” in dorsolateral frontal, posterior parietal, and anterior insular cortices, the antero-insular connector being most predominant during pain. These findings provide a mechanistic picture of the brain networks architecture and support fractal-like similarities between the micro-and macrotemporal dynamics associated with pain. The anterior insula appears to play an essential role in information integration, possibly by determining priorities for the processing of information and subsequent entrance into other points of the brain connectome.


2018 ◽  
Vol 119 (6) ◽  
pp. 2256-2264 ◽  
Author(s):  
Zarrar Shehzad ◽  
Gregory McCarthy

Whether category information is discretely localized or represented widely in the brain remains a contentious issue. Initial functional MRI studies supported the localizationist perspective that category information is represented in discrete brain regions. More recent fMRI studies using machine learning pattern classification techniques provide evidence for widespread distributed representations. However, these latter studies have not typically accounted for shared information. Here, we find strong support for distributed representations when brain regions are considered separately. However, localized representations are revealed by using analytical methods that separate unique from shared information among brain regions. The distributed nature of shared information and the localized nature of unique information suggest that brain connectivity may encourage spreading of information but category-specific computations are carried out in distinct domain-specific regions. NEW & NOTEWORTHY Whether visual category information is localized in unique domain-specific brain regions or distributed in many domain-general brain regions is hotly contested. We resolve this debate by using multivariate analyses to parse functional MRI signals from different brain regions into unique and shared variance. Our findings support elements of both models and show information is initially localized and then shared among other regions leading to distributed representations being observed.


2015 ◽  
Vol 25 (05) ◽  
pp. 1550006 ◽  
Author(s):  
Dimitris Kugiumtzis ◽  
Vasilios K. Kimiskidis

Background: Transcranial magnetic stimulation (TMS) can have inhibitory effects on epileptiform discharges (EDs) of patients with focal seizures. However, the brain connectivity before, during and after EDs, with or without the administration of TMS, has not been extensively explored. Objective: To investigate the brain network of effective connectivity during ED with and without TMS in patients with focal seizures. Methods: For the effective connectivity a direct causality measure is applied termed partial mutual information from mixed embedding (PMIME). TMS-EEG data from two patients with focal seizures were analyzed. Each EEG record contained a number of EDs in the majority of which TMS was administered over the epileptic focus. As a control condition, sham stimulation over the epileptogenic zone or real TMS at a distance from the epileptic focus was also performed. The change in brain connectivity structure was investigated from the causal networks formed at each sliding window. Conclusion: The PMIME could detect distinct changes in the network structure before, within, and after ED. The administration of real TMS over the epileptic focus, in contrast to sham stimulation, terminated the ED prematurely in a node-specific manner and regained the network structure as if it would have terminated spontaneously.


Author(s):  
Youngjoo Seo ◽  
Manuel Morante ◽  
Yannis Kopsinis ◽  
Sergios Theodoridis
Keyword(s):  

Brain ◽  
2019 ◽  
Vol 142 (12) ◽  
pp. 3991-4002 ◽  
Author(s):  
Martijn P van den Heuvel ◽  
Lianne H Scholtens ◽  
Siemon C de Lange ◽  
Rory Pijnenburg ◽  
Wiepke Cahn ◽  
...  

See Vértes and Seidlitz (doi:10.1093/brain/awz353) for a scientific commentary on this article. Is schizophrenia a by-product of human brain evolution? By comparing the human and chimpanzee connectomes, van den Heuvel et al. demonstrate that connections unique to the human brain show greater involvement in schizophrenia pathology. Modifications in service of higher-order brain functions may have rendered the brain more vulnerable to dysfunction.


2020 ◽  
Author(s):  
Chadi G. Abdallah ◽  
Kyung-Heup Ahn ◽  
Lynnette A. Averill ◽  
Samaneh Nemati ◽  
Christopher L. Averill ◽  
...  

ABSTRACTOver the past decade, various N-Methyl-D-Aspartate modulators have failed in clinical trials, underscoring the challenges of developing novel rapid-acting antidepressants based solely on the receptor or regional targets of ketamine. Thus, identifying the effect of ketamine on the brain circuitry and networks is becoming increasingly critical. In this longitudinal functional magnetic resonance imaging study of data from 265 participants, we used a validated predictive model approach that allows the full assessment of brain functional connectivity, without the need for seed selection or connectivity summaries. First, we identified a connectome fingerprint (CFP) in healthy participants (Cohort A, n=25) during intravenous infusion of a subanesthetic dose of ketamine, compared to normal saline. We then demonstrated the robustness and reproducibility of the discovered Ketamine CFP in two separate healthy samples (Cohort B, n=22; Cohort C, n=18). Finally, we investigated the Ketamine CFP connectivity at 1-week post treatment in major depressive disorder patients randomized to 8 weeks of sertraline or placebo (Cohort D, n=200). We found a significant, robust, and reproducible Ketamine CFP, consistent with reduced connectivity within the primary cortices and within the executive network, but increased connectivity between the executive network and the rest of the brain. Compared to placebo, the Ketamine CFP connectivity changes at 1-week predicted response to sertraline at 8-weeks. In each of Cohort A-C, ketamine significantly increased connectivity in a previously identified Antidepressant CFP. Investigating the brain connectivity networks, we successfully identified a robust and reproducible ketamine biomarker that is related to the mechanisms of antidepressants.Graphical Abstract


2021 ◽  
Vol 15 ◽  
Author(s):  
Peter A. Robinson ◽  
James A. Henderson ◽  
Natasha C. Gabay ◽  
Kevin M. Aquino ◽  
Tara Babaie-Janvier ◽  
...  

Spectral analysis based on neural field theory is used to analyze dynamic connectivity via methods based on the physical eigenmodes that are the building blocks of brain dynamics. These approaches integrate over space instead of averaging over time and thereby greatly reduce or remove the temporal averaging effects, windowing artifacts, and noise at fine spatial scales that have bedeviled the analysis of dynamical functional connectivity (FC). The dependences of FC on dynamics at various timescales, and on windowing, are clarified and the results are demonstrated on simple test cases, demonstrating how modes provide directly interpretable insights that can be related to brain structure and function. It is shown that FC is dynamic even when the brain structure and effective connectivity are fixed, and that the observed patterns of FC are dominated by relatively few eigenmodes. Common artifacts introduced by statistical analyses that do not incorporate the physical nature of the brain are discussed and it is shown that these are avoided by spectral analysis using eigenmodes. Unlike most published artificially discretized “resting state networks” and other statistically-derived patterns, eigenmodes overlap, with every mode extending across the whole brain and every region participating in every mode—just like the vibrations that give rise to notes of a musical instrument. Despite this, modes are independent and do not interact in the linear limit. It is argued that for many purposes the intrinsic limitations of covariance-based FC instead favor the alternative of tracking eigenmode coefficients vs. time, which provide a compact representation that is directly related to biophysical brain dynamics.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shu Guo ◽  
Xiaoqi Chen ◽  
Yimeng Liu ◽  
Rui Kang ◽  
Tao Liu ◽  
...  

The brain network is one specific type of critical infrastructure networks, which supports the cognitive function of biological systems. With the importance of network reliability in system design, evaluation, operation, and maintenance, we use the percolation methods of network reliability on brain networks and study the network resistance to disturbances and relevant failure modes. In this paper, we compare the brain networks of different species, including cat, fly, human, mouse, and macaque. The differences in structural features reflect the requirements for varying levels of functional specialization and integration, which determine the reliability of brain networks. In the percolation process, we apply different forms of disturbances to the brain networks based on metrics that characterize the network structure. Our findings suggest that the brain networks are mostly reliable against random or k-core-based percolation with their structure design, yet becomes vulnerable under betweenness or degree-based percolation. Our results might be useful to identify and distinguish brain connectivity failures that have been shown to be related to brain disorders, as well as the reliability design of other technological networks.


2021 ◽  
Author(s):  
Takashi Nakano ◽  
Masahiro Takamura ◽  
Haruki Nishimura ◽  
Maro Machizawa ◽  
Naho Ichikawa ◽  
...  

AbstractNeurofeedback (NF) aptitude, which refers to an individual’s ability to change its brain activity through NF training, has been reported to vary significantly from person to person. The prediction of individual NF aptitudes is critical in clinical NF applications. In the present study, we extracted the resting-state functional brain connectivity (FC) markers of NF aptitude independent of NF-targeting brain regions. We combined the data in fMRI-NF studies targeting four different brain regions at two independent sites (obtained from 59 healthy adults and six patients with major depressive disorder) to collect the resting-state fMRI data associated with aptitude scores in subsequent fMRI-NF training. We then trained the regression models to predict the individual NF aptitude scores from the resting-state fMRI data using a discovery dataset from one site and identified six resting-state FCs that predicted NF aptitude. Next we validated the prediction model using independent test data from another site. The result showed that the posterior cingulate cortex was the functional hub among the brain regions and formed predictive resting-state FCs, suggesting NF aptitude may be involved in the attentional mode-orientation modulation system’s characteristics in task-free resting-state brain activity.


2017 ◽  
Vol 1 (2) ◽  
pp. 69-99 ◽  
Author(s):  
William Hedley Thompson ◽  
Per Brantefors ◽  
Peter Fransson

Network neuroscience has become an established paradigm to tackle questions related to the functional and structural connectome of the brain. Recently, interest has been growing in examining the temporal dynamics of the brain’s network activity. Although different approaches to capturing fluctuations in brain connectivity have been proposed, there have been few attempts to quantify these fluctuations using temporal network theory. This theory is an extension of network theory that has been successfully applied to the modeling of dynamic processes in economics, social sciences, and engineering article but it has not been adopted to a great extent within network neuroscience. The objective of this article is twofold: (i) to present a detailed description of the central tenets of temporal network theory and describe its measures, and; (ii) to apply these measures to a resting-state fMRI dataset to illustrate their utility. Furthermore, we discuss the interpretation of temporal network theory in the context of the dynamic functional brain connectome. All the temporal network measures and plotting functions described in this article are freely available as the Python package Teneto.


Sign in / Sign up

Export Citation Format

Share Document