scholarly journals Category representations in the brain are both discretely localized and widely distributed

2018 ◽  
Vol 119 (6) ◽  
pp. 2256-2264 ◽  
Author(s):  
Zarrar Shehzad ◽  
Gregory McCarthy

Whether category information is discretely localized or represented widely in the brain remains a contentious issue. Initial functional MRI studies supported the localizationist perspective that category information is represented in discrete brain regions. More recent fMRI studies using machine learning pattern classification techniques provide evidence for widespread distributed representations. However, these latter studies have not typically accounted for shared information. Here, we find strong support for distributed representations when brain regions are considered separately. However, localized representations are revealed by using analytical methods that separate unique from shared information among brain regions. The distributed nature of shared information and the localized nature of unique information suggest that brain connectivity may encourage spreading of information but category-specific computations are carried out in distinct domain-specific regions. NEW & NOTEWORTHY Whether visual category information is localized in unique domain-specific brain regions or distributed in many domain-general brain regions is hotly contested. We resolve this debate by using multivariate analyses to parse functional MRI signals from different brain regions into unique and shared variance. Our findings support elements of both models and show information is initially localized and then shared among other regions leading to distributed representations being observed.

2021 ◽  
Author(s):  
Xin Di ◽  
Zhiguo Zhang ◽  
Ting Xu ◽  
Bharat B. Biswal

AbstractSpatially remote brain regions show synchronized activity as typically revealed by correlated functional MRI (fMRI) signals. An emerging line of research has focused on the temporal fluctuations of connectivity, however, its relationships with stable connectivity have not been clearly illustrated. We examined the stable and dynamic connectivity from fMRI data when the participants watched four different movie clips. Using inter-individual correlation, we were able to estimate functionally meaningful dynamic connectivity associated with different movies. Widespread consistent dynamic connectivity was observed for each movie clip as well as their differences between clips. A cartoon movie clip showed higher consistent dynamic connectivity with the posterior cingulate cortex and supramarginal gyrus, while a court drama clip showed higher dynamic connectivity with the auditory cortex and temporoparietal junction, which suggest the involvement of specific brain processing for different movie contents. In contrast, stable connectivity was highly similar among the movie clips, and showed fewer statistical significant differences. The patterns of dynamic connectivity had higher accuracy for classifications of different movie clips than the stable connectivity and regional activity. These results support the functional significance of dynamic connectivity in reflecting functional brain changes, which could provide more functionally related information than stable connectivity.


2021 ◽  
Author(s):  
Takashi Nakano ◽  
Masahiro Takamura ◽  
Haruki Nishimura ◽  
Maro Machizawa ◽  
Naho Ichikawa ◽  
...  

AbstractNeurofeedback (NF) aptitude, which refers to an individual’s ability to change its brain activity through NF training, has been reported to vary significantly from person to person. The prediction of individual NF aptitudes is critical in clinical NF applications. In the present study, we extracted the resting-state functional brain connectivity (FC) markers of NF aptitude independent of NF-targeting brain regions. We combined the data in fMRI-NF studies targeting four different brain regions at two independent sites (obtained from 59 healthy adults and six patients with major depressive disorder) to collect the resting-state fMRI data associated with aptitude scores in subsequent fMRI-NF training. We then trained the regression models to predict the individual NF aptitude scores from the resting-state fMRI data using a discovery dataset from one site and identified six resting-state FCs that predicted NF aptitude. Next we validated the prediction model using independent test data from another site. The result showed that the posterior cingulate cortex was the functional hub among the brain regions and formed predictive resting-state FCs, suggesting NF aptitude may be involved in the attentional mode-orientation modulation system’s characteristics in task-free resting-state brain activity.


2020 ◽  
Vol 65 (1) ◽  
pp. 23-32
Author(s):  
Mehdi Rajabioun ◽  
Ali Motie Nasrabadi ◽  
Mohammad Bagher Shamsollahi ◽  
Robert Coben

AbstractBrain connectivity estimation is a useful method to study brain functions and diagnose neuroscience disorders. Effective connectivity is a subdivision of brain connectivity which discusses the causal relationship between different parts of the brain. In this study, a dual Kalman-based method is used for effective connectivity estimation. Because of connectivity changes in autism, the method is applied to autistic signals for effective connectivity estimation. For method validation, the dual Kalman based method is compared with other connectivity estimation methods by estimation error and the dual Kalman-based method gives acceptable results with less estimation errors. Then, connectivities between active brain regions of autistic and normal children in the resting state are estimated and compared. In this simulation, the brain is divided into eight regions and the connectivity between regions and within them is calculated. It can be concluded from the results that in the resting state condition the effective connectivity of active regions is decreased between regions and is increased within each region in autistic children. In another result, by averaging the connectivity between the extracted active sources of each region, the connectivity between the left and right of the central part is more than that in other regions and the connectivity in the occipital part is less than that in others.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8305
Author(s):  
César Covantes-Osuna ◽  
Jhonatan B. López ◽  
Omar Paredes ◽  
Hugo Vélez-Pérez ◽  
Rebeca Romo-Vázquez

The brain has been understood as an interconnected neural network generally modeled as a graph to outline the functional topology and dynamics of brain processes. Classic graph modeling is based on single-layer models that constrain the traits conveyed to trace brain topologies. Multilayer modeling, in contrast, makes it possible to build whole-brain models by integrating features of various kinds. The aim of this work was to analyze EEG dynamics studies while gathering motor imagery data through single-layer and multilayer network modeling. The motor imagery database used consists of 18 EEG recordings of four motor imagery tasks: left hand, right hand, feet, and tongue. Brain connectivity was estimated by calculating the coherence adjacency matrices from each electrophysiological band (δ, θ, α and β) from brain areas and then embedding them by considering each band as a single-layer graph and a layer of the multilayer brain models. Constructing a reliable multilayer network topology requires a threshold that distinguishes effective connections from spurious ones. For this reason, two thresholds were implemented, the classic fixed (average) one and Otsu’s version. The latter is a new proposal for an adaptive threshold that offers reliable insight into brain topology and dynamics. Findings from the brain network models suggest that frontal and parietal brain regions are involved in motor imagery tasks.


2018 ◽  
Vol 30 (7) ◽  
pp. 963-972 ◽  
Author(s):  
Andrew D. Engell ◽  
Na Yeon Kim ◽  
Gregory McCarthy

Perception of faces has been shown to engage a domain-specific set of brain regions, including the occipital face area (OFA) and the fusiform face area (FFA). It is commonly held that the OFA is responsible for the detection of faces in the environment, whereas the FFA is responsible for processing the identity of the face. However, an alternative model posits that the FFA is responsible for face detection and subsequently recruits the OFA to analyze the face parts in the service of identification. An essential prediction of the former model is that the OFA is not sensitive to the arrangement of internal face parts. In the current fMRI study, we test the sensitivity of the OFA and FFA to the configuration of face parts. Participants were shown faces in which the internal parts were presented in a typical configuration (two eyes above a nose above a mouth) or in an atypical configuration (the locations of individual parts were shuffled within the face outline). Perception of the atypical faces evoked a significantly larger response than typical faces in the OFA and in a wide swath of the surrounding posterior occipitotemporal cortices. Surprisingly, typical faces did not evoke a significantly larger response than atypical faces anywhere in the brain, including the FFA (although some subthreshold differences were observed). We propose that face processing in the FFA results in inhibitory sculpting of activation in the OFA, which accounts for this region's weaker response to typical than to atypical configurations.


Author(s):  
Zhaoyue Shi ◽  
Khue Tran ◽  
Christof Karmonik ◽  
Timothy Boone ◽  
Rose Khavari

Abstract Background Several studies have reported brain activations and functional connectivity (FC) during micturition using functional magnetic resonance imaging (fMRI) and concurrent urodynamics (UDS) testing. However, due to the invasive nature of UDS procedure, non-invasive resting-state fMRI is being explored as a potential alternative. The purpose of this study is to evaluate the feasibility of utilizing resting states as a non-invasive alternative for investigating the bladder-related networks in the brain. Methods We quantitatively compared FC in brain regions belonging to the bladder-related network during the following states: ‘strong desire to void’, ‘voiding initiation (or attempt at voiding initiation)’, and ‘voiding (or continued attempt of voiding)’ with FC during rest in nine multiple sclerosis women with voiding dysfunction using fMRI data acquired at 7 T and 3 T. Results The inter-subject correlation analysis showed that voiding (or continued attempt of voiding) is achieved through similar network connections in all subjects. The task-based bladder-related network closely resembles the resting-state intrinsic network only during voiding (or continued attempt of voiding) process but not at other states. Conclusion Resting states fMRI can be potentially utilized to accurately reflect the voiding (or continued attempt of voiding) network. Concurrent UDS testing is still necessary for studying the effects of strong desire to void and initiation of voiding (or attempt at initiation of voiding).


2021 ◽  
Vol 288 (1944) ◽  
pp. 20202866
Author(s):  
Yoosik Youm ◽  
Junsol Kim ◽  
Seyul Kwak ◽  
Jeanyung Chey

To avoid polarization and maintain small-worldness in society, people who act as attitudinal brokers are critical. These people maintain social ties with people who have dissimilar and even incompatible attitudes. Based on resting-state functional magnetic resonance imaging ( n = 139) and the complete social networks from two Korean villages ( n = 1508), we investigated the individual-level neural capacity and social-level structural opportunity for attitudinal brokerage regarding gender role attitudes. First, using a connectome-based predictive model, we successfully identified the brain functional connectivity that predicts attitudinal diversity of respondents' social network members. Brain regions that contributed most to the prediction included mentalizing regions known to be recruited in reading and understanding others’ belief states. This result was corroborated by leave-one-out cross-validation, fivefold cross-validation and external validation where the brain connectivity identified in one village was used to predict the attitudinal diversity in another independent village. Second, the association between functional connectivity and attitudinal diversity of social network members was contingent on a specific position in a social network, namely, the structural brokerage position where people have ties with two people who are not otherwise connected.


Author(s):  
Yoshiharu Ikutani ◽  
Takatomi Kubo ◽  
Satoshi Nishida ◽  
Hideaki Hata ◽  
Kenichi Matsumoto ◽  
...  

ABSTRACTExpertise enables humans to achieve outstanding performance on domain-specific tasks, and programming is no exception. Many have shown that expert programmers exhibit remarkable differences from novices in behavioral performance, knowledge structure, and selective attention. However, the underlying differences in the brain are still unclear. We here address this issue by associating the cortical representation of source code with individual programming expertise using a data-driven decoding approach. This approach enabled us to identify seven brain regions, widely distributed in the frontal, parietal, and temporal cortices, that have a tight relationship with programming expertise. In these brain regions, functional categories of source code could be decoded from brain activity and the decoding accuracies were significantly correlated with individual behavioral performances on source-code categorization. Our results suggest that programming expertise is built up on fine-tuned cortical representations specialized for the domain of programming.


Author(s):  
Christos Koutlis

In this work the objective is to detect brain connectivity changes during epileptic seizures using methods of multivariate time series analysis on scalp multi-channel EEG. Different brain regions represented by the electrode positions interact in terms of Granger causality and these directed connections formulate the brain network at a certain time window. The numerous proposed network features are believed to capture the information of many network characteristics. The ability of a single network feature of the brain network to detect the transition of brain activity from preictal to ictal is examined. The connectivity of the brain is estimated by 13 Granger causality indices on 7 epochs from multivariate time series (19 channels per epoch) at 15 time windows of 20 seconds (5 min in total) before seizure and during the seizure. The characteristics of the networks are estimated by 379 network features. Finally, the discrimination task (preictal vs. ictal) for each network feature is evaluated by the area under receiver operating characteristic curve (AUROC).


Author(s):  
Geng Zhang ◽  
Qi Zhu ◽  
Jing Yang ◽  
Ruting Xu ◽  
Zhiqiang Zhang ◽  
...  

Automatic diagnosis of brain diseases based on brain connectivity network (BCN) classification is one of the hot research fields in medical image analysis. The functional brain network reflects the brain functional activities and structural brain network reflects the neural connections of the main brain regions. It is of great significance to explore and explain the inner mechanism of the brain and to understand and treat brain diseases. In this paper, based on the graph structure characteristics of brain network, the fusion model of functional brain network and structural brain network is designed to classify the diagnosis of brain mental diseases. Specifically, the main work of this paper is to use the Laplacian graph embed the information of diffusion tensor imaging, which contains the characteristics of structural brain networks, into the functional brain network with hyper-order functional connectivity information built based on functional magnetic resonance data using the sparse representation method, to obtain brain network with both functional and structural characteristics. Projection of the brain network and the two original modes data to the kernel space respectively and then classified by the multi-task learning method. Experiments on the epilepsy dataset show that our method has better performance than several state-of-the-art methods. In addition, brain regions and connections that are highly correlated with disease revealed by our method are discussed.


Sign in / Sign up

Export Citation Format

Share Document