scholarly journals Variable and sexually conflicting selection on Silene stellata floral traits by a putative moth pollinator selective agent

Evolution ◽  
2020 ◽  
Vol 74 (7) ◽  
pp. 1321-1334 ◽  
Author(s):  
Juannan Zhou ◽  
Richard J. Reynolds ◽  
Elizabeth A. Zimmer ◽  
Michele R. Dudash ◽  
Charles B. Fenster
2015 ◽  
Vol 282 (1808) ◽  
pp. 20150178 ◽  
Author(s):  
Diane R. Campbell ◽  
John M. Powers

Climate has the potential to influence evolution, but how it influences the strength or direction of natural selection is largely unknown. We quantified the strength of selection on four floral traits of the subalpine herb Ipomopsis sp. in 10 years that differed in precipitation, causing extreme temporal variation in the date of snowmelt in the Colorado Rocky Mountains. The chosen floral traits were under selection by hummingbird and hawkmoth pollinators, with hawkmoth abundance highly variable across years. Selection for flower length showed environmental sensitivity, with stronger selection in years with later snowmelt, as higher water resources can allow translation of pollination success into fitness based on seed production. Selection on corolla width also varied across years, favouring narrower corolla tubes in two unusual years with hawkmoths, and wider corollas in another late snowmelt year. Our results illustrate how changes in climate could alter natural selection even when the primary selective agent is not directly influenced.


Author(s):  
Aradhana Phukan ◽  
P. K. Barua ◽  
D. Sarma ◽  
S. D. Deka

Two CMS lines, IR 58025A and IR 68888A along with their maintainers and two fertility restorers, LuitR and IR 36R, were evaluated for flower and plant characters during early ahu (February-June) and kharif (July-November) seasons. IR 58025A showed longer stigmata and styles, and higher spikelet Length/Breadth (L/B) ratio while IR 68888A showed broader stigmata and wider glume opening angle in both the seasons. IR 68888A also exhibited higher pollen sterility during early ahu. IR 36R was characterized with broad anthers. LuitR showed longer and broader anthers with more pollen than others. Plant height, flag leaf length, flag leaf width and area were higher in IR 36R. Panicle exsertion was complete in pollen parents whereas it was 78-80% in CMS lines. The widest flag leaf angle was found in IR 58025B during early Ahu and in IR 36R during kharif. Kharif season was more favourable for growth of the plants with higher seed set percentage while floral traits of the CMS lines were better expressed in early Ahu. Manipulation of the seeding sequence of the parental lines in early Ahu is warranted for better seed set provided the seed crop escapes heavy premonsoon showers during reproductive stage. IR 68888A/LuitR was a good combination for pollen dispersal and seed setting.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 988
Author(s):  
Charlotte Descamps ◽  
Najet Boubnan ◽  
Anne-Laure Jacquemart ◽  
Muriel Quinet

Drought and higher temperatures caused by climate change are common stress conditions affecting plant growth and development. The reproductive phase is particularly sensitive to stress, but plants also need to allocate their limited resources to produce floral traits and resources to attract pollinators. We investigated the physiological and floral consequences of abiotic stress during the flowering period of Impatiens glandulifera, a bee-pollinated species. Plants were exposed to three temperatures (21, 24, 27 °C) and two watering regimes (well-watered, water stress) for 3 weeks. Not all parameters measured responded in the same manner to drought and/or heat stress. Drought stress induced leaf senescence, decreasing leaf number by 15–30% depending on growth temperature. Drought also reduced photosynthetic output, while temperature rise affected stomatal conductance. The number of flowers produced dropped 40–90% in response to drought stress, while higher temperatures shortened flower life span. Both stresses affected floral traits, but flower resources diminished in response to higher temperatures, with lower nectar volume and pollen protein content. We conclude that increased temperatures and drought stress, which are becoming more frequent with climate change, can negatively affect flowering, even if plants deploy physiological resistance strategies.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 895
Author(s):  
Samira El Hanafi ◽  
Souad Cherkaoui ◽  
Zakaria Kehel ◽  
Ayed Al-Abdallat ◽  
Wuletaw Tadesse

Hybrid wheat breeding is one of the most promising technologies for further sustainable yield increases. However, the cleistogamous nature of wheat displays a major bottleneck for a successful hybrid breeding program. Thus, an optimized breeding strategy by developing appropriate parental lines with favorable floral trait combinations is the best way to enhance the outcrossing ability. This study, therefore, aimed to dissect the genetic basis of various floral traits using genome-wide association study (GWAS) and to assess the potential of genome-wide prediction (GP) for anther extrusion (AE), visual anther extrusion (VAE), pollen mass (PM), pollen shedding (PSH), pollen viability (PV), anther length (AL), openness of the flower (OPF), duration of floret opening (DFO) and stigma length. To this end, we employed 196 ICARDA spring bread wheat lines evaluated for three years and genotyped with 10,477 polymorphic SNP. In total, 70 significant markers were identified associated to the various assessed traits at FDR ≤ 0.05 contributing a minor to large proportion of the phenotypic variance (8–26.9%), affecting the traits either positively or negatively. GWAS revealed multi-marker-based associations among AE, VAE, PM, OPF and DFO, most likely linked markers, suggesting a potential genomic region controlling the genetic association of these complex traits. Of these markers, Kukri_rep_c103359_233 and wsnp_Ex_rep_c107911_91350930 deserve particular attention. The consistently significant markers with large effect could be useful for marker-assisted selection. Genomic selection revealed medium to high prediction accuracy ranging between 52% and 92% for the assessed traits with the least and maximum value observed for stigma length and visual anther extrusion, respectively. This indicates the feasibility to implement genomic selection to predict the performance of hybrid floral traits with high reliability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
I. A. H. Khwajah Mohinudeen ◽  
Saumya Pandey ◽  
Hemalatha Kanniyappan ◽  
Vignesh Muthuvijayan ◽  
Smita Srivastava

AbstractEndophytic fungi with the ability to produce plant based secondary metabolites are a potential alternative for producing the host plant metabolite and to prevent natural plants from extinction. To isolate a high metabolite yielding endophytic strain from plants, hundreds of endophytic strains are screened and tested for product yield separately under axenic state, before shortlisting the potential endophyte, which involves huge time consumption. In this study, strategies for screening and selection of high camptothecin yielding endophytes from their natural habitat were proposed. A correlation was built between the camptothecin yield in the explants and the endophytes isolated from them. In addition, camptothecin yield was compared between the endophytes isolated from young and matured plants. Further, camptothecin producers and non-producers strains were compared for their tolerance toward camptothecin. The study indicates that high camptothecin yielding endophytes were isolated from high yielding explants and younger plants and they were more tolerant to camptothecin in comparison to non-camptothecin yielding endophytes. Thus, choosing a young and high yielding explant for endophyte isolation, and use of camptothecin as a selective agent in the growth medium, can be instrumental in screening and selection of high camptothecin yielding endophytes from nature in relatively less time.


2001 ◽  
Vol 17 (5) ◽  
pp. 719-728 ◽  
Author(s):  
HIROSHI KUDOH ◽  
TAKASHI SUGAWARA ◽  
SUGONG WU ◽  
JIN MURATA

Floral trait correlations were compared between the two flower morphs of a distylous Ophiorrhiza napoensis population in a subtropical evergreen forest at the Defu Natural Animal Preserve, Guangxi, China. Common principal component analyses indicated that overall patterns in correlations among floral traits were morph specific in the study population. Strong positive correlations (r > 0.9) between anther height and corolla-tube length were found in both morphs. Stigma height correlated positively with corolla-tube length in the long-styled morph (r = 0.843), but not in the short-styled morph (r = −0.018). Flower-morph-specific correlation suggests that natural selection by pollinators has moulded trait covariance among floral traits. Because morph-specific correlations are expressed as the patterns of within-morph variation among multiple traits, putative genes responsible for the stigma-corolla tube correlation should not link to the supergene for sex-organ reciprocity between the morphs, but their expression is limited in the long-styled morph.


Sign in / Sign up

Export Citation Format

Share Document