Effect of temperature on the fracture behaviour of heat‐treated Al–Cu–Li alloy laser welds under low‐cycle fatigue loading

2020 ◽  
Vol 43 (6) ◽  
pp. 1250-1261 ◽  
Author(s):  
Alexander G. Malikov ◽  
Evgenij V. Karpov ◽  
Anatoliy M. Orishich
Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4237
Author(s):  
Takuma Tanaka ◽  
Togo Sugioka ◽  
Tatsuya Kobayashi ◽  
Ikuo Shohji ◽  
Yuya Shimada ◽  
...  

The effect of heat treatment on tensile and low cycle fatigue properties of the oxygen-free copper for electric power equipment was investigated. The heat treatment at 850 °C for 20 min, which corresponds to the vacuum brazing process, caused the grain growth and relaxation of strain by recrystallization, and thus, the residual stress in the oxygen-free copper was reduced. The tensile strength and 0.2% proof stress were decreased, and elongation was increased by the heat treatment accompanying recrystallization. The plastic strain in the heat-treated specimen was increased compared with that in the untreated specimen under the same stress amplitude condition, and thus, the low cycle fatigue life of the oxygen-free copper was degraded by the heat treatment. Striation was observed in the crack initiation area of the fractured surface in the case of the stress amplitude less than 100 MPa regardless of the presence of the heat treatment. With an increase in the stress amplitude, the river pattern and the quasicleavage fracture were mainly observed in the fracture surfaces of the untreated specimens, and they were observed with striations in the fracture surfaces of the heat-treated ones. The result of the electron backscattered diffraction (EBSD) analysis showed that the grain reference orientation deviation (GROD) map was confirmed to be effective to investigate the fatigue damage degree in the grain by low cycle fatigue. In addition, the EBSD analysis revealed that the grains were deformed, and the GROD value reached approximately 28° in the fractured areas of heat-treated specimens after the low cycle fatigue test.


2006 ◽  
Vol 514-516 ◽  
pp. 804-809
Author(s):  
S. Gao ◽  
Ewald Werner

The forging die material, a high strength steel designated W513 is considered in this paper. A fatigue damage model, based on thermodynamics and continuum damage mechanics, is constructed in which both the previous damage and the loading sequence are considered. The unknown material parameters in the model are identified from low cycle fatigue tests. Damage evolution under multi-level fatigue loading is investigated. The results show that the fatigue life is closely related to the loading sequence. The fatigue life of the materials with low fatigue loading first followed by high fatigue loading is longer than that for the reversed loading sequence.


2021 ◽  
Author(s):  
Kaiju Lu ◽  
Ankur Chauhan ◽  
Aditya Srinivasan Tirunilai ◽  
Jens Freudenberger ◽  
Alexander Kauffmann ◽  
...  

1999 ◽  
Author(s):  
V. M. Harik ◽  
J. R. Klinger ◽  
B. K. Fink ◽  
T. A. Bogetti ◽  
A. Paesano ◽  
...  

Abstract Low cycle fatigue (LCF) behavior of unidirectional polymer matrix composites (PMCs) reinforced with glass fibers is investigated. LCF conditions involve high loads reaching up to 90% of the material ultimate strength. LCF characterization of PMCs is carried out under tension-tension fatigue loading to identify the key physical phenomena occurring in PMCs under LCF conditions and to determine their unique characteristics. Analysis of experimental data indicates that finite strain rates, large strains and stress ratios may affect LCF behavior of PMC structures and the property degradation rates.


Author(s):  
M. Benhaddou ◽  
M. Ghammouri ◽  
Z. Hammouch ◽  
F. Latrache

The main originality of this work consists in investigating low cycle fatigue of cylindrical test piece with wings under imposed constraint and for the temperature 20°c, 200°c, 400°c. Based on a combination between the fatigue parameter of Jiang-Sehitoglu and the relationship of Coffin-Manson, a numerical model for the prediction of the number of cycles at break. It was found that the CuCrZr cylindrical test piece showed a reduction in fatigue life with increasing temperature.


Sign in / Sign up

Export Citation Format

Share Document