Cloudiness reduces the bleaching response of coral reefs exposed to heat stress

2021 ◽  
Author(s):  
Pedro C. Gonzalez‐Espinosa ◽  
Simon D. Donner
2021 ◽  
Vol 8 ◽  
Author(s):  
Elizabeth Ann Lenz ◽  
Lucy A. Bartlett ◽  
Anastasios Stathakopoulos ◽  
Ilsa B. Kuffner

The Florida Keys reef tract (FKRT) has a unique geological history wherein Holocene sea-level rise and bathymetry interacted, resulting in a reef-building system with notable spatial differences in reef development. Overprinted on this geologic history, recent global and local stressors have led to degraded reefs dominated by fleshy algae, soft corals, and sponges. Here, we assessed how coral physiology (calcification rate, tissue thickness, reproduction, symbiosis, and bleaching) varies seasonally (winter vs. summer) and geographically using 40 colonies of the mustard hill coral Porites astreoides from four sites across 350 km along the FKRT from 2015 to 2017. The study coincided with a high-temperature event in late summer 2015 that caused heterogeneous levels of coral bleaching across sites. Bleaching severity differed by site, with bleaching response more aligned with heat stress retroactively calculated from local degree heating weeks than those predicted by satellites. Despite differences in temperature profiles and bleaching severity, all colonies hosted Symbiodiniaceae of the same genus (formerly Clade A and subtypes). Overall, P. astreoides at Dry Tortugas National Park, the consistently coolest site, had the highest calcification rates, symbiont cell densities, and reproductive potential (all colonies were reproductive, with most planula larvae per polyp). Corals at Dry Tortugas and Fowey Rocks Light demonstrated strong seasonality in net calcification (higher in summer) and did not express visual or partial-mortality responses from the bleaching event; in contrast, colonies in the middle and southern part of the upper keys, Sombrero Key and Crocker Reef, demonstrated similar reduced fitness from bleaching, but differential recovery trajectories following the heat stress. Identifying reefs, such as Dry Tortugas and possibly Fowey Rocks Light that may serve as heat-stress refugia, is important in selecting candidate sites for adaptive reef-management strategies, such as selective propagation and assisted gene flow, to increase coral-species adaptation to ocean warming.


2021 ◽  
Author(s):  
◽  
Mareike Sudek

<p>Coral reefs around the world are facing many threats and have sustained severe losses in coral cover over the past few decades. Coral bleaching and disease outbreaks have contributed substantially to this reef decline, however our understanding of factors contributing to the increase in coral disease prevalence are poorly understood. Information on the disease dynamics of different diseases affecting a reef system is essential for the development of effective management strategies.  The aim of this research was to characterise and build a case study of a bleaching response affecting Porites compressa in Kaneohoe Bay, Oahu, Hawaii. It manifests as a localised, discrete area on the coral colony with a bleached coenenchyme and pigmented polyps, giving the affected area a “speckled” appearance. A disease by definition is any interruption, cessation or disorder of body functions, systems or organs. Results of this study showed that this localised bleaching causes tissue loss and a reduction in the number of gametes, and hence harm to the host. It was therefore classified as a disease and named Porites bleaching with tissue loss (PBTL). In addition, PBTL does not appear to represent a common thermal bleaching response as it was present throughout the year during times when seawater temperature was well within the coral’s thermal threshold.  Symbiodinium cell density in PBTL-affected areas of the coral colony was reduced by 65%, and examination of affected host tissue using light microscopy showed fragmentation and necrosis. However, no potential pathogen was observed. Transmission electron microscopy (TEM) revealed a high occurrence of potential apoptotic Symbiodinium cells and a potential increase in the abundance of virus-like particles (VLPs) in PBTL-affected tissue. However a causal relationship remains to be established. Long-term monitoring showed spatio-temporal variations in PBTL prevalence. Temporal variations in prevalence reflected a seasonal trend with a peak during the summer months, linked to increasing seawater temperature. Spatial variations in disease prevalence were correlated with parrotfish density, turbidity and water motion. Of these, a negative correlation with variability (SD) in turbidity explained most of the variability in PBTL prevalence (12.8%). A positive correlation with water motion explained 9% and a positive correlation with the variability in parrotfish density explained 4.4%. Overall, only a relatively small proportion of variability in PBTL prevalence could be explained by these three factors (26.2%), suggesting that other factors, not investigated in this study, play a more important role in explaining PBTL patterns or that temporal variation in temperature is the overall major driving force.  Monitoring of individually tagged P. compressa colonies showed that >80% of affected colonies sustained partial colony mortality (tissue loss) within two months; on average, one third of the colony is lost. The amount of tissue loss sustained was correlated to lesion size but not colony size. Case fatality (total mortality) was low (2.6%), however this disease can affect the same colonies repeatedly, suggesting a potential for progressive damage which could cause increased tissue loss over time. PBTL was not transmissible through direct contact or the water column in controlled aquaria experiments, suggesting that this disease might not be caused by a pathogen, is not highly infectious, or perhaps requires a vector for transmission. At present, PBTL has only been observed within Kaneohe Bay. An investigation of the potential role of host and Symbiodinium genetics in disease susceptibility revealed the same Symbiodinium sub-clade (C15) in healthy and PBTL-affected colonies, suggesting no involvement of Symbiodinium type in disease etiology. Results regarding host genetics remained inconclusive; however a difference in allele frequency at one microsatellite locus was observed between healthy and diseased samples. This difference could, however, be due to a lower amplification of PBTL-affected samples at this locus and needs to be regarded with some caution.  The results of this study provide a case definition of PBTL which can be used as a baseline in further studies. P. compressa is the main framework building species in Kaneohe Bay, and the information gathered here on disease dynamics and virulence suggests that PBTL has the potential to negatively impact the resilience of reefs within the bay. Further research into the etiology of PBTL is necessary to fully understand the impact that this disease could have on coral reefs in Hawaii.</p>


Science ◽  
2021 ◽  
Vol 372 (6545) ◽  
pp. 977-980 ◽  
Author(s):  
Mary K. Donovan ◽  
Deron E. Burkepile ◽  
Chelsey Kratochwill ◽  
Tom Shlesinger ◽  
Shannon Sully ◽  
...  

Climate change threatens coral reefs by causing heat stress events that lead to widespread coral bleaching and mortality. Given the global nature of these mass coral mortality events, recent studies argue that mitigating climate change is the only path to conserve coral reefs. Using a global analysis of 223 sites, we show that local stressors act synergistically with climate change to kill corals. Local factors such as high abundance of macroalgae or urchins magnified coral loss in the year after bleaching. Notably, the combined effects of increasing heat stress and macroalgae intensified coral loss. Our results offer an optimistic premise that effective local management, alongside global efforts to mitigate climate change, can help coral reefs survive the Anthropocene.


2020 ◽  
Author(s):  
Oliver Selmoni ◽  
Gaël Lecellier ◽  
Laurent Vigliola ◽  
Véronique Berteaux-Lecellier ◽  
Stéphane Joost

AbstractAs anomalous heat waves are causing the widespread decline of coral reefs worldwide, there is an urgent need to identify coral populations tolerant to thermal stress. Heat stress adaptive potential is the degree of tolerance expected from evolutionary processes and, for a given reef, depends on the arrival of propagules from reefs exposed to recurrent thermal stress. For this reason, assessing spatial patterns of thermal adaptation and reef connectivity is of paramount importance to inform conservation strategies.In this work, we applied a seascape genomics framework to characterize the spatial patterns of thermal adaptation and connectivity for coral reefs of New Caledonia (Southern Pacific). In this approach, remote sensing of seascape conditions was combined with genomic data from three coral species. For every reef of the region, we computed a probability of heat stress adaptation, and two indices forecasting inbound and outbound connectivity. We then compared our indicators to field survey data, and observed that decrease of coral cover after heat stress was lower at reefs predicted with high probability of adaptation and inbound connectivity. Last, we discussed how these indicators can be used to inform local conservation strategies and preserve the adaptive potential of New Caledonian reefs.


2021 ◽  
Author(s):  
Xinru Li ◽  
Simon Donner

Abstract Marine heatwaves (MHWs), periods of anomalously warm sea surface temperature (SST) which can have significant impacts on marine ecosystems, have increased in frequency and severity over recent decades. Many coastal systems (e.g. coral reefs) are particularly vulnerable to warm-season heat stress when temperature can exceed organisms’ thermal thresholds and lead to mass mortality. While many studies have examined the change of the warm-season heat stress occurrence over time, e.g., for coral reefs, there has been less analysis of the thermal structure of heat stress events. Here we examined the trend in the characteristics of warm-season heat stress (referred to as warm-season MHWs) at the global-scale from 1985 to 2019, using multiple metrics for each of duration, peak intensity, accumulated heat stress, heating rates and level of intensity. The results showed that warm-season MHWs have become more frequent, longer-lasting, featured higher peak intensity and accumulated heat stress across most of the ocean over the past four decades. Furthermore, decomposition of the trends in warm-season MHWs structure showed that the increased accumulated heat stress was predominantly driven by the increased duration rather than the increased intensity, especially in the western and central equatorial Pacific. The results contribute to improving the understanding of warm-season MHWs, which may help inform the prediction of their impacts on marine ecosystems as well as marine conservation and management under climate change.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255304
Author(s):  
Sara E. Cannon ◽  
Erietera Aram ◽  
Toaea Beiateuea ◽  
Aranteiti Kiareti ◽  
Max Peter ◽  
...  

Coral reefs are increasingly affected by a combination of acute and chronic disturbances from climate change and local stressors. The coral reefs of the Republic of Kiribati’s Gilbert Islands are exposed to frequent heat stress caused by central-Pacific type El Niño events, and may provide a glimpse into the future of coral reefs in other parts of the world, where the frequency of heat stress events will likely increase due to climate change. Reefs in the Gilbert Islands experienced a series of acute disturbances over the past fifteen years, including mass coral bleaching in 2004–2005 and 2009–2010, and an outbreak of the corallivorous sea star Acanthaster cf solaris, or Crown-of-Thorns (CoTs), in 2014. The local chronic pressures including nutrient loading, sedimentation and fishing vary within the island chain, with highest pressures on the reefs in urbanized South Tarawa Atoll. In this study, we examine how recovery from acute disturbances differs across a gradient of human influence in neighboring Tarawa and Abaiang Atolls from 2012 through 2018. Benthic cover and size frequency data suggests that local coral communities have adjusted to the heat stress via shifts in the community composition to more temperature-tolerant taxa and individuals. In densely populated South Tarawa, we document a phase shift to the weedy and less bleaching-sensitive coral Porites rus, which accounted for 81% of all coral cover by 2018. By contrast, in less populated Abaiang, coral communities remained comparatively more diverse (with higher percentages of Pocillopora and the octocoral Heliopora) after the disturbances, but reefs had lower overall hard coral cover (18%) and were dominated by turf algae (41%). The CoTs outbreak caused a decline in the cover and mean size of massive Porites, the only taxa that was a ‘winner’ of the coral bleaching events in Abaiang. Although there are signs of recovery, the long-term trajectory of the benthic communities in Abaiang is not yet clear. We suggest three scenarios: they may remain in their current state (dominated by turf algae), undergo a phase shift to dominance by the macroalgae Halimeda, or recover to dominance by thermally tolerant hard coral genera. These findings provide a rare glimpse at the future of coral reefs around the world and the ways they may be affected by climate change, which may allow scientists to better predict how other reefs will respond to increasing heat stress events across gradients of local human disturbance.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Aarón Israel Muñiz-Castillo ◽  
Andrea Rivera-Sosa ◽  
Iliana Chollett ◽  
C. Mark Eakin ◽  
Luisa Andrade-Gómez ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
pp. eabd4210
Author(s):  
Amanda Williams ◽  
Eric N. Chiles ◽  
Dennis Conetta ◽  
Jananan S. Pathmanathan ◽  
Phillip A. Cleves ◽  
...  

Understanding the response of the coral holobiont to environmental change is crucial to inform conservation efforts. The most pressing problem is “coral bleaching,” usually precipitated by prolonged thermal stress. We used untargeted, polar metabolite profiling to investigate the physiological response of the coral species Montipora capitata and Pocillopora acuta to heat stress. Our goal was to identify diagnostic markers present early in the bleaching response. From the untargeted UHPLC-MS data, a variety of co-regulated dipeptides were found that have the highest differential accumulation in both species. The structures of four dipeptides were determined and showed differential accumulation in symbiotic and aposymbiotic (alga-free) populations of the sea anemone Aiptasia (Exaiptasia pallida), suggesting the deep evolutionary origins of these dipeptides and their involvement in symbiosis. These and other metabolites may be used as diagnostic markers for thermal stress in wild coral.


2021 ◽  
Author(s):  
◽  
Mareike Sudek

<p>Coral reefs around the world are facing many threats and have sustained severe losses in coral cover over the past few decades. Coral bleaching and disease outbreaks have contributed substantially to this reef decline, however our understanding of factors contributing to the increase in coral disease prevalence are poorly understood. Information on the disease dynamics of different diseases affecting a reef system is essential for the development of effective management strategies.  The aim of this research was to characterise and build a case study of a bleaching response affecting Porites compressa in Kaneohoe Bay, Oahu, Hawaii. It manifests as a localised, discrete area on the coral colony with a bleached coenenchyme and pigmented polyps, giving the affected area a “speckled” appearance. A disease by definition is any interruption, cessation or disorder of body functions, systems or organs. Results of this study showed that this localised bleaching causes tissue loss and a reduction in the number of gametes, and hence harm to the host. It was therefore classified as a disease and named Porites bleaching with tissue loss (PBTL). In addition, PBTL does not appear to represent a common thermal bleaching response as it was present throughout the year during times when seawater temperature was well within the coral’s thermal threshold.  Symbiodinium cell density in PBTL-affected areas of the coral colony was reduced by 65%, and examination of affected host tissue using light microscopy showed fragmentation and necrosis. However, no potential pathogen was observed. Transmission electron microscopy (TEM) revealed a high occurrence of potential apoptotic Symbiodinium cells and a potential increase in the abundance of virus-like particles (VLPs) in PBTL-affected tissue. However a causal relationship remains to be established. Long-term monitoring showed spatio-temporal variations in PBTL prevalence. Temporal variations in prevalence reflected a seasonal trend with a peak during the summer months, linked to increasing seawater temperature. Spatial variations in disease prevalence were correlated with parrotfish density, turbidity and water motion. Of these, a negative correlation with variability (SD) in turbidity explained most of the variability in PBTL prevalence (12.8%). A positive correlation with water motion explained 9% and a positive correlation with the variability in parrotfish density explained 4.4%. Overall, only a relatively small proportion of variability in PBTL prevalence could be explained by these three factors (26.2%), suggesting that other factors, not investigated in this study, play a more important role in explaining PBTL patterns or that temporal variation in temperature is the overall major driving force.  Monitoring of individually tagged P. compressa colonies showed that >80% of affected colonies sustained partial colony mortality (tissue loss) within two months; on average, one third of the colony is lost. The amount of tissue loss sustained was correlated to lesion size but not colony size. Case fatality (total mortality) was low (2.6%), however this disease can affect the same colonies repeatedly, suggesting a potential for progressive damage which could cause increased tissue loss over time. PBTL was not transmissible through direct contact or the water column in controlled aquaria experiments, suggesting that this disease might not be caused by a pathogen, is not highly infectious, or perhaps requires a vector for transmission. At present, PBTL has only been observed within Kaneohe Bay. An investigation of the potential role of host and Symbiodinium genetics in disease susceptibility revealed the same Symbiodinium sub-clade (C15) in healthy and PBTL-affected colonies, suggesting no involvement of Symbiodinium type in disease etiology. Results regarding host genetics remained inconclusive; however a difference in allele frequency at one microsatellite locus was observed between healthy and diseased samples. This difference could, however, be due to a lower amplification of PBTL-affected samples at this locus and needs to be regarded with some caution.  The results of this study provide a case definition of PBTL which can be used as a baseline in further studies. P. compressa is the main framework building species in Kaneohe Bay, and the information gathered here on disease dynamics and virulence suggests that PBTL has the potential to negatively impact the resilience of reefs within the bay. Further research into the etiology of PBTL is necessary to fully understand the impact that this disease could have on coral reefs in Hawaii.</p>


2022 ◽  
Vol 964 (1) ◽  
pp. 012004
Author(s):  
Tran Thi Van ◽  
Nguyen Trinh Duc Hieu ◽  
Nguyen Huu Huan ◽  
Nguyen Phuong Lien

Abstract Khanh Hoa Coastal area is considered the area with the most diverse coral reefs in the west of the East Sea. With the trend of increasing global temperature, the coral reefs here are affected, including the phenomenon of bleaching. This paper uses a Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) data source to evaluate the possible relationship between sea surface temperature and coral bleaching in the period 2010-2019 in Khanh Hoa coastal area is based on two parameters: Hot Spot (HS) and Degree Heating Months (DHM). Research results show that in the past 10 years, corals in Khanh Hoa coastal area may experience heat stress in 6 years, including 2010, 2013 and the years from 2016 to 2019. The phenomenon of heat stress starts to occur in May of each year, and the level of heat stress in 2010 was stronger than in other years. Within 6 years, there have been heat stress, coral bleaching events due to temperature only occurred in 2010; while in 2013, 2016, 2017, 2018 and 2019, corals suffered from heat stress in the watch level, meaning an increase in temperature is not yet capable of causing coral bleaching. The cause of coral bleaching in 2010 was the combined effect of the increase in sea surface temperature and the suppression of upwelling during the southwest monsoon.


Sign in / Sign up

Export Citation Format

Share Document