Seasonal variations in the physiological status and energy content of somatic and reproductive tissues of chub

1997 ◽  
Vol 50 (3) ◽  
pp. 511-522 ◽  
Author(s):  
L. Encina ◽  
C. Granado-Lorencio
2019 ◽  
Vol 122 (6) ◽  
pp. 648-656 ◽  
Author(s):  
L. Ning ◽  
Y. Liu ◽  
W. Wang ◽  
Y. Li ◽  
L. Chen ◽  
...  

AbstractThe fenofibrate functions in mammals could be affected by many factors such as dietary nutrient levels and physiological status. However, this phenomenon has not been well studied in fish. The goal of our study was to investigate the effect of dietary protein contents on metabolic regulation of fenofibrate in Nile tilapia. An 8-week experiment was conducted to feed fish with four diets at two protein levels (28 and 38 %) with or without the supplementation of fenofibrate (200 mg/kg body weight per d). After the trial, the body morphometric parameters, plasma biochemical parameters and quantitative PCR data were examined. These results showed that fenofibrate significantly reduced the feeding intake and weight gain rate, increased the oxidative stress (increased plasma methane dicarboxylic aldehyde) and liver : body ratio (increased hepatosomatic index) in the low protein (LP)-fed fish. In contrast, fenofibrate exhibited a lipid-lowering (reduced hepatic lipid) effect and up-regulated the expressions of the genes related to lipid catabolism, transport and anabolic metabolism in the high protein (HP)-fed fish. The present study suggested that lipid-lowering effect of fenofibrate would be strengthened in the fish fed with the HP diet containing high energy, but in the fish fed with the LP diet containing low energy, the fenofibrate treatment would cause adverse effects for metabolism. Taking together, our study showed that the metabolic regulation of fenofibrate in Nile tilapia was dependent not only on feed energy content but also on dietary nutrient composition, such as dietary protein and/or lipid levels.


2003 ◽  
Vol 60 (8) ◽  
pp. 949-958 ◽  
Author(s):  
Valerio Matozzo ◽  
Luisa Da Ros ◽  
Loriano Ballarin ◽  
Francesca Meneghetti ◽  
Maria Gabriella Marin

In the last few years, the Manila clam (Tapes philippinarum) has been subjected to intense fishing effort in the Lagoon of Venice owing to their commercial importance. Because of the lack of data concerning fishing-induced immunomodulation in bivalves, the consequences of fishing impact on functional responses of clam haemocytes were investigated. Clams were seasonally collected from September 2000 to July 2001 from three sites: S. Angelo, a free-fishing area, and Chioggia, inside a licensed area for clam culture, in two zones characterised by fishing and non fishing, respectively. Haematocrit, phagocytosis, Neutral Red retention time, and lysozyme and superoxide dismutase activities were evaluated. No clear fishing effect was recorded, whereas a seasonal pattern of the cell para meters analysed was revealed. Alterations in functional responses of haemocytes seem to be more closely dependent on seasonal variations in both environmental parameters and physiological status of clams than on stress caused by fishing, and they may also be related to adaptation strategies of bivalves.


2013 ◽  
Vol 4 (s1) ◽  
pp. 37-41 ◽  
Author(s):  
E. Kebreab ◽  
A. V. Hansen ◽  
A. B. Leytem

Phosphorus (P) is an essential mineral that needs to be supplied in sufficient quantities for maintenance and growth and milk production in dairy cattle. However, over 60% of the P consumed can be excreted in faeces with a potential to cause environmental pollution. Concern over higher levels of P in intensively managed livestock systems has led to legislation such as the Water Framework Directive in the European Union. In this manuscript, several methods of reducing P pollution are discussed. A major source of environmental P pollution has been overfeeding P mainly due to addition of ‘safety margin’ over the animal's requirement and concerns related to fertility. Matching the animal's requirement and feeding in groups so that animals at the same physiological status are fed according to their requirement has a potential to reduce P excretion significantly. P can also be reduced by matching available P with the metabolizable energy content of the diet because more P can be incorporated into milk when P is utilized by rumen microbes, which are limited by energy. Plants contain phytate bound P that need to be broken up before they can be absorbed by the animal. Although ruminants can digest phytate, use of phytase enzyme could help either directly by acting on phytate P or improvement of feed digestibility. Pasture management can lead to improved nutrient cycling, particularly if the soil is deficient in P. However, overfertilizing pasture could result is higher runoff of dissolved reactive P. Management practices that leave adequate forage residue on the surface such as rotational grazing will improve infiltration and decrease runoff, reducing nutrient losses.


1985 ◽  
Vol 49 (6) ◽  
pp. 445-447
Author(s):  
E Solomon ◽  
D Stoll
Keyword(s):  

2000 ◽  
Vol 35 (3-4) ◽  
pp. 134-141 ◽  
Author(s):  
R Ivell ◽  
A-R Fuchs ◽  
R Bathgate ◽  
G Tillmann ◽  
T Kimura

2012 ◽  
Vol 82 (3) ◽  
pp. 177-186 ◽  
Author(s):  
Violeta Fajardo ◽  
Gregorio Varela-Moreiras

In the past, food fortification along with nutritional education and the decrease in food costs relative to income have proven successful in eliminating common nutritional deficiencies. These deficiencies such as goiter, rickets, beriberi, and pellagra have been replaced with an entirely new set of “emergent deficiencies” that were not previously considered a problem [e.g., folate and neural tube defects (NTDs)]. In addition, the different nutrition surveys in so-called affluent countries have identified “shortfalls” of nutrients specific to various age groups and/or physiological status. Complex, multiple-etiology diseases, such as atherosclerosis, diabetes, cancer, and obesity have emerged. Food fortification has proven an effective tool for tackling nutritional deficiencies in populations; but today a more reasonable approach is to use food fortification as a means to support but not replace dietary improvement strategies (i. e. nutritional education campaigns). Folic acid (FA) is a potential relevant factor in the prevention of a number of pathologies. The evidence linking FA to NTD prevention led to the introduction of public health strategies to increase folate intakes: pharmacological supplementation, mandatory or voluntary fortification of staple foods with FA, and the advice to increase the intake of folate-rich foods. It is quite contradictory to observe that, regardless of these findings, there is only limited information on food folate and FA content. Data in Food Composition Tables and Databases are scarce or incomplete. Fortification of staple foods with FA has added difficulty to this task. Globally, the decision to fortify products is left up to individual food manufacturers. Voluntary fortification is a common practice in many countries. Therefore, the “worldwide map of vitamin fortification” may be analyzed. It is important to examine if fortification today really answers to vitamin requirements at different ages and/or physiological states. The real impact of vitamin fortification on some key biomarkers is also discussed. An important question also to be addressed: how much is too much? It is becoming more evident that chronic excessive intakes may be harmful and a wide margin of safety seems to be a mandatory practice in dietary recommendations. Finally, the “risk/benefit” dilemma is also considered in the “new” FA-fortified world.


2014 ◽  
Vol 84 (5-6) ◽  
pp. 244-251 ◽  
Author(s):  
Robert J. Karp ◽  
Gary Wong ◽  
Marguerite Orsi

Abstract. Introduction: Foods dense in micronutrients are generally more expensive than those with higher energy content. These cost-differentials may put low-income families at risk of diminished micronutrient intake. Objectives: We sought to determine differences in the cost for iron, folate, and choline in foods available for purchase in a low-income community when assessed for energy content and serving size. Methods: Sixty-nine foods listed in the menu plans provided by the United States Department of Agriculture (USDA) for low-income families were considered, in 10 domains. The cost and micronutrient content for-energy and per-serving of these foods were determined for the three micronutrients. Exact Kruskal-Wallis tests were used for comparisons of energy costs; Spearman rho tests for comparisons of micronutrient content. Ninety families were interviewed in a pediatric clinic to assess the impact of food cost on food selection. Results: Significant differences between domains were shown for energy density with both cost-for-energy (p < 0.001) and cost-per-serving (p < 0.05) comparisons. All three micronutrient contents were significantly correlated with cost-for-energy (p < 0.01). Both iron and choline contents were significantly correlated with cost-per-serving (p < 0.05). Of the 90 families, 38 (42 %) worried about food costs; 40 (44 %) had chosen foods of high caloric density in response to that fear, and 29 of 40 families experiencing both worry and making such food selection. Conclusion: Adjustments to USDA meal plans using cost-for-energy analysis showed differentials for both energy and micronutrients. These differentials were reduced using cost-per-serving analysis, but were not eliminated. A substantial proportion of low-income families are vulnerable to micronutrient deficiencies.


Sign in / Sign up

Export Citation Format

Share Document