Effect of temperature and roachRutilus rutilusgroup size on swimming speed and prey capture rate of perchPerca fluviatilisandR. rutilus

2010 ◽  
Vol 76 (4) ◽  
pp. 900-912 ◽  
Author(s):  
A. N. Linløkken ◽  
E. Bergman ◽  
L. Greenberg
1980 ◽  
Vol 58 (9) ◽  
pp. 1564-1574 ◽  
Author(s):  
J. P. Myers ◽  
S. L. Williams ◽  
F. A. Pitelka

We investigated the role of prey size, prey depth, prey microdistribution, and substrate penetrability in affecting prey availability to sanderlings (Calidris alba Pallas). Five experiments were performed in the laboratory manipulating these availability factors and prey density in beach sand. The effects on prey risk and sanderling prey capture rate were measured.Prey risk increased linearly with prey size. Prey within 10 mm of the surface were vulnerable to predation but their risk decreased sharply below that depth. Substrate penetrability affected prey risk by controlling how deeply a sanderling could probe beneath the sand surface while searching for prey.Prey capture rates varied between 0.01 and 0.84 captures per second of search time over a range of prey density between 60 and 1200 prey per square metre. Prey size and substrate penetrability affected capture rate through their effect on prey risk, and substrate penetrability also influenced capture rate directly. Prey density had the strongest effect on prey capture rate. Measurements in the field around Bodega Bay, California, indicate that prey density, prey size, prey depth, and substrate penetrability can have significant impact on sanderling foraging under field conditions.


1991 ◽  
Vol 39 (6) ◽  
pp. 643 ◽  
Author(s):  
A Lill

The role of behavioural adjustments in meeting increased daily energy requirements in winter was investigated in rifleman, Acanthisitta chloris, inhabiting lowland forest in South I., New Zealand, by comparing their population density, time-activity budget and foraging behaviour in autumn and winter. Rifleman foraged for 83% of daytime in both seasons. The combined effects on the birds' winter energy budget of increased thermoregulation costs and the shorter daylength for foraging were at least partly offset by an estimated 23-29% decrease in the amount of energy expended daily on activity and a 78% increment in prey caught per day. The reduced energy expenditure on activity resulted from rifleman spending less time on expensive flying and more time roosting. The increase in prey capture rate may have stemmed from a 35% seasonal reduction in the birds' population density and reduced prey mobility at lower ambient temperatures. Marked sexual size dimorphism was not reflected in gender differences in activity budgeting or prey capture rate, but the sexes differed in their relative use of foraging substrates. Rifleman showed few seasonal changes in daily activity rhythm or microhabitat use. The behavioural energetic overwintering tactics of rifleman are compared with those of other Australasian and north temperate zone land-birds.


2021 ◽  
Vol 20 (4A) ◽  
pp. 105-114
Author(s):  
Nguyen Trung Kien ◽  
Hua Thai An ◽  
Huynh Minh Sang ◽  
Do Huu Hoang ◽  
Cao Van Nguyen ◽  
...  

Acclimation culture and trial culture of two sea snake species Hydrophis curtus and H. cyanocinctus in composite tanks were conducted to determine growth, survival rate, predation behavior and prey selection. The results showed that adults of H. curtus and H. cyanocinctus did not capture any prey such as anchovy, eel and shrimp in a period of 30 days of acclimation culture. The body weight of two these species reduced gradually from 783.3 ± 76.4 g and 360.0 ± 60.0 g to 660.0 ± 135.2 g and 315.0 ± 77.8 g, respectively. Survival rate was 100% in H. curtus and 80% in H. cyanocinctus. Meanwhile, the results of acclimation culture of sea snake juvenile revealed that frozen anchovy was preferred prey in both of two species. The body weight of H. curtus increased from 49.8 ± 0.5 g to 70.0 ± 8.2 g and that of H. cyanocinctus was 44.3 ± 3.1 g to 47.1 ± 5.2 g. The prey capture rate of H. curtus and H. cyanocinctus was 100% and 60%, respectively. Survival rate of the juvenile of two species was 100% after 30 days of acclimation culture. In 60 days of trial culture, similar results as acclimation culture were observed in adults of two sea snake species, they still did not capture any prey and the body weight reduced gradually. The result of 60-day culture of sea snake juvenile showed that the prey capture rate was 100% in both of two species. The body weight of H. curtus and H. cyanocinctus increased from 70.0 ± 8.2 g and 57.5 ± 5.8 g to 78.3 ± 15.3 g and 65.0 ± 14.1, respectively. SGR of H. curtus was 0.16 ± 0.32 %/day and that of H. cyanocinctus was 0.52 ± 0.36%/day. The survival rate of H. curtus and H. cyanocinctus was 60% and 40% in period of 60 day trial.


1991 ◽  
Vol 48 (1) ◽  
pp. 123-131 ◽  
Author(s):  
Michele Dionne ◽  
Carol L. Folt

In this laboratory study we measured the independent effects of macrophyte growth form, plant density, and prey abundance on the foraging rate of the pumpkinseed sunfish (Lepomis gibbosus). We demonstrate that macrophyte growth forms are not all similar in their effects on fish foraging. Prey capture rates of pumpkinseeds foraging among Scirpus validus (cylindrical stems) were 53 and 365% times greater than for Potamogeton amplifolius (leafy stems) for cladoceran (Sida crystallina) and larval damselfly (Coenagrionidae) prey, respectively. Plant growth form influenced prey capture rates more than charges in natural plant density. Plant density effects ranged from none on damselfly capture rates to a 29% decline in cladoceran capture rate over a twofold increase in plant density. Our results indicate that in plant-structured habitats, variation in plant growth form can be an important determinant of fish foraging and habitat associations.


2016 ◽  
Vol 283 (1834) ◽  
pp. 20160972 ◽  
Author(s):  
Martin J. Lankheet ◽  
Twan Stoffers ◽  
Johan L. van Leeuwen ◽  
Bart J. A. Pollux

Live-bearing fish start hunting for mobile prey within hours after birth, an example of extreme precociality. Because prenatal, in utero , development of this behaviour is constrained by the lack of free-swimming sensory-motor interactions, immediate success after birth depends on innate, evolutionarily acquired patterns. Optimal performance however requires flexible adjustment to an unpredictable environment. To distinguish innate from postnatally developing patterns we analysed over 2000 prey capture events for 28 metallic livebearers ( Girardinus metallicus ; Poeciliidae), during their first 3 days after birth. We show that the use of synchronous pectoral fin beats for final acceleration and ingestion is fixed and presumably innate. It allows for direct, symmetrical control of swimming speed and direction, while avoiding head yaw. Eye movements and body curvatures, however, change considerably in the first few days, showing that eye-tail coordination requires postnatal development. The results show how successful prey captures for newborn, live-bearing fish are based on a combination of fixed motor programmes and rapid, postnatal development.


2000 ◽  
Vol 48 (1) ◽  
pp. 59 ◽  
Author(s):  
V. W. Framenau ◽  
L. A. Finley ◽  
K. Allan ◽  
M. Love ◽  
D. Shirley ◽  
...  

Multiple prey capture, the behaviour of a predator attacking prey whilst handling a previously caught item, occurs in a variety of spiders that do not build webs. The effects of recent feeding history on the frequency of multiple prey attacks, handling time, ingestion rate, and intercatch intervals were examined experimentally in the wolf spider Lycosa lapidosa McKay. Juvenile spiders were subjected to two different feeding regimes (starvation for 14 and 28 days) and then provided with two different prey types (blowflies, Lucilia cuprina, and crickets, Acheta domestica). These two starvation levels or prey types had little effect on the frequency (75%) of multiple prey attacks. Spiders ingested approximately half the weight of any captured prey, regardless of how many prey items they attacked. At the same time, the handling time per prey item decreased with an increasing number of prey attacked. This indicates a more efficient ingestion rate when more prey are consumed. While the attacking time for the first prey was the same for all treatments, the first intercatch interval was longer for spiders that were starved longer. Chronically starved L. lapidosa appear to secure a previously caught item rather than optimise their capture rate by attacking further available prey.


1958 ◽  
Vol 15 (4) ◽  
pp. 587-605 ◽  
Author(s):  
J. R. Brett ◽  
M. Hollands ◽  
D. F. Alderdice

The cruising speeds of underyearling and yearling sockeye and coho salmon were determined in a rotating annular trough, for acclimation temperatures ranging from 1° to 24 °C. Variation in swimming speed characterized the first 40 to 50 minutes; subsequently a relatively steady state was obtained.Optimum cruising speeds occurred at 15 °C. for sockeye and 20 °C. for coho. Maximum sustained levels fell mainly between 1.0 and 1.5 ft. per second (30 and 45 cm. per sec.).Exercised young coho showed improved performance over those raised in standard hatchery troughs.The significance of the relative swimming capacities of the two species, and the effect of temperature, is discussed in relation to their ecology.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Simon Poppinga ◽  
Jassir Smaij ◽  
Anna Sofia Westermeier ◽  
Martin Horstmann ◽  
Sebastian Kruppert ◽  
...  

AbstractWe investigated the predator-prey interactions between an Australian ecotype of the carnivorous waterwheel plant (Aldrovanda vesiculosa, Droseraceae) and its potential natural prey, the water flea Daphnia longicephala (Daphniidae), which also occurs in Australia. A. vesiculosa develops snap-traps, which close within ~10–100 ms after mechanical triggering by zooplankton prey. Prey capture attempts (PCAs) were recorded via high-speed cinematography in the laboratory. From 14 recorded PCAs, nine were successful for the plant (the prey was caught), and five were unsuccessful (prey could escape), resulting in a capture rate of ~64%. The prey animals’ locomotion behaviour (antenna beat frequency and movement type) in trap vicinity or inside the open traps is very variable. Traps were mainly triggered with the second antennae. During trap closure, the animals moved only very little actively. A flight response in reaction to an initiated trap closure was not observed. However, several animals could escape, either by having a “lucky” starting position already outside the triggered trap, by freeing themselves after trap closure, or by being pressed out by the closing trap lobes. According to our observations in the successful PCAs, we hypothesize that the convex curvature of the two trap lobes (as seen from the outside) and the infolded trap rims are structural means supporting the capture and retention of prey. Our results are discussed in a broader biological context and promising aspects for future studies are proposed.


Sign in / Sign up

Export Citation Format

Share Document