scholarly journals Electron Microprobe Analyses and Magnetic Properties of Non-Stoichiometric Titanomagnetites in Basaltic Rocks

1970 ◽  
Vol 21 (5) ◽  
pp. 485-511 ◽  
Author(s):  
K. M. Creer ◽  
J. D. Ibbetson
2010 ◽  
Vol 54 (1) ◽  
pp. 77-94 ◽  
Author(s):  
Petr Schnabl ◽  
Jiří K. Novák ◽  
Vladimír Cajz ◽  
Miloš Lang ◽  
Kadosa Balogh ◽  
...  

1993 ◽  
Vol 57 (387) ◽  
pp. 257-264 ◽  
Author(s):  
H. V. Eales ◽  
B. Teigler ◽  
W. D. Maier

AbstractCompositional variations with respect to minor elements A1, Cr, Ti and Mn, and major elements Fe and Mg, in orthopyroxenes along ca. 160 km of strike of the Lower (LZ), Lower Critical (LCZ) and Upper Critical (UCZ) Zones are reviewed on the basis of 1900 analyses by electron microprobe. AI increases with stratigraphic height and declining Mg/(Mg + Fe2) ratios (hereafter MMF ratios) through the LZ and LCZ, reaching peak values close to the base of the UCZ, where the first cumulus plagioclase appears in the succession. Above this, Al contents decline as MMF ratios decline. Through the same interval, subdued increase in Ti occurs through >1000 m of ultramafic cumulates, but this increase accelerates within the ca. 450 m UCZ sequence. Mn increases linearly with declining MMF ratios through the entire succession, Cr levels are highest in orthopyroxenes of the ultramafic LZ and LCZ, and olivine norites of the UCZ, but decline in more evolved norites and associated anorthosites of the UCZ.This pattern of cryptic variations, displayed by a thick succession of cumulates, is consistent with the model of Bence and Papike (1972) and Grove and Bence (1977) for basaltic rocks, which links the levels of minor elements in pyroxenes with entry of plagioclase into the paragenesis.


Author(s):  
S.M. Kuehner ◽  
D.J. Joswiak

The group of minerals classified as feldspars are among the most common rock-forming minerals in the earth’s crust. The majority of feldspar compositions fall within the ternary system NaAlSi3O8-KAlSi3O8-CaAl2Si2O8, though substitution of other elements, usually in minor amounts, is common. Described here is a naturally occurring ferric iron sanidine feldspar composition in which up to ∼70 mole% of the KAlSi3O8 molecule is replaced by KFe3+ Si3O8. It thus constitutes a new end-member feldspar composition and the data have been submitted to the Commission on New Mineral Names for evaluation.The ferric iron sanidine is found in the 1.1ma volcanic rocks of the Leucite Hills, Wyo. The composition of these lavas and plugs is unusually rich in K and Fe3+, and depleted in Al compared to typical basaltic rocks. Sanidine grains are among the last phase to crystallize in the groundmass of the rocks classified as orendites, and rarely exceed 150um in length.


The measured magnetic properties of submarine igneous rocks, comprising data from approximately 300 specimens, are summarized. Basaltic rocks dominate the collection numerically, and are distinguished by their high Q (ratio of remanent to induced magnetic intensities). Limited numbers of altered samples indicate that spilitization, chloritization, and serpentinization can drastically reduce the intensity of magnetization. The available thermomagnetic data suggest that low Curie points may be typical of quenched basalts. The limited range of submarine igneous rock types examined, and the strong bias towards quenched samples necessitates a supplement to this summary in the form of a discussion of studies of magnetic properties from selected igneous rocks outcropping above sea level. In these studies, serpentinization of ultrabasic rocks has been observed in one case to increase the intensity of magnetization; chloritization and spilitization are confirmed as being magnetically destructive; maghaemitization may have destructive effects; titanomagnetite oxidation variation dominates in magnetic change of basaltic lavas (and some corresponding chemical changes are likely to occur); basaltic intrusives have a much more limited titanomagnetic oxidation range than is generally observed in lavas; and spontaneous demagnetization with time probably exists, at least in basalts. New data are presented. These include the magnetic properties of harzburgites dredged from the Macquarie Ridge, and eight pillow basalts from the South Pacific and Scotia Sea. The former suggest that harzburgite is capable of creating strong magnetic anomalies. Samples for the latter study were sufficiently large for study of the variation of magnetic and petrological properties with depth beneath the cooling surface. Systematic texturual changes from glassy exterior, through a variolitic zone to aphanitic interior characterize the silicates in most samples. Chloritization is present in some aphanitic parts. Serpentinization is present in some aphanitic zones and also next to joints. The opaque minerals were studied in detail in one pillow. The titanomagnetites are all fine and of low oxidation state. Very fine sulphides are common. The intensity of magnetization and susceptibility variation are closely related to the changes in titanomagnetite grain size. Although optically undetectable in the titanomagnetites, a zone of slightly higher oxidation is inferred to exist towards the centre of the pillow by the presence of higher Curie points and magnetic stability, and lower sulphide content. New data are also presented from traverses of Icelandic lavas and dykes, and from spilites of St Thomas, Virgin Islands. It is concluded that the submarine basalt magnetic properties which have so far been determined are largely a function of quenching, in contrast with the data from lavas outcropping above sea level which have generally experienced longer cooling periods, and which therefore include a greater range of titanomagnetite grain size and oxidation states. The quenching process can apparently proceed faster than the oxidizing process in basalts. Magnetic properties of the surface of submarine basalts are therefore largely a function of cooling history, rather than any upper mantle phenomenon. The new data confirm that deuteric or post-cooling alteration of basalts and ultrabasic rocks can be magnetically destructive: chloritization is always associated with a decreasing intensity of magnetization and Q ratio. Spilitization is similarly destructive. The magnetic effect of serpentinization, however, is not uniquely predictable. The magnetic data for submarine ultrabasic rocks show much variation, but are too limited for further generalization.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Author(s):  
R. I. Johnsson-Hegyeli ◽  
A. F. Hegyeli ◽  
D. K. Landstrom ◽  
W. C. Lane

Last year we reported on the use of reflected light interference microscopy (RLIM) for the direct color photography of the surfaces of living normal and malignant cell cultures without the use of replicas, fixatives, or stains. The surface topography of living cells was found to follow underlying cellular structures such as nuceloli, nuclear membranes, and cytoplasmic organelles, making possible the study of their three-dimensional relationships in time. The technique makes possible the direct examination of cells grown on opaque as well as transparent surfaces. The successful in situ electron microprobe analysis of the elemental composition and distribution within single tissue culture cells was also reported.This paper deals with the parallel and combined use of scanning electron microscopy (SEM) and the two previous techniques in a study of living and fixed cancer cells. All three studies can be carried out consecutively on the same experimental specimens without disturbing the cells or their structural relationships to each other and the surface on which they are grown. KB carcinoma cells were grown on glass coverslips in closed Leighto tubes as previously described. The cultures were photographed alive by means of RLIM, then fixed with a fixative modified from Sabatini, et al (1963).


Author(s):  
June D. Kim

Iron-base alloys containing 8-11 wt.% Si, 4-8 wt.% Al, known as “Sendust” alloys, show excellent soft magnetic properties. These magnetic properties are strongly dependent on heat treatment conditions, especially on the quenching temperature following annealing. But little has been known about the microstructure and the Fe-Si-Al ternary phase diagram has not been established. In the present investigation, transmission electron microscopy (TEM) has been used to study the microstructure in a Sendust alloy as a function of temperature.An Fe-9.34 wt.% Si-5.34 wt.% Al (approximately Fe3Si0.6Al0.4) alloy was prepared by vacuum induction melting, and homogenized at 1,200°C for 5 hrs. Specimens were heat-treated in a vertical tube furnace in air, and the temperature was controlled to an accuracy of ±2°C. Thin foils for TEM observation were prepared by jet polishing using a mixture of perchloric acid 15% and acetic acid 85% at 10V and ∼13°C. Electron microscopy was performed using a Philips EM 301 microscope.


Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
J. S. Park ◽  
B. N. Juterbock

The electric and thermal properties of the resistor material in an automotive spark plug should be stable during its service lifetime. Containing many elements and many phases, this material has a very complex microstructure. Elemental mapping with an electron microprobe can reveal the distribution of all relevant elements throughout the sample. In this work, it is demonstrated that the charge-up effect, which would distort an electron image and, therefore, is normally to be avoided in an electron imaging work, could be used to advantage to reveal conductive and resistive zones in a sample. Its combination with elemental mapping can provide valuable insight into the underlying conductivity mechanism of the resistor.This work was performed in a CAMECA SX-50 microprobe. The spark plug used in the present report was a commercial product taken from the shelf. It was sectioned to expose the cross section of the resistor. The resistor was known not to contain the precious metal Au as checked on the carbon coated sample. The sample was then stripped of carbon coating and re-coated with Au.


Sign in / Sign up

Export Citation Format

Share Document